Cumulative Subject Index1

Volumes 127-132

A

Acetaldehyde

condensation with benzene derivatives over USY zeolites, 130, 138

and ethanol, decarbonylation on Rh(111) catalyst surface, divergent pathways, 130, 528

oxidation over heteropoly compounds, selectivitycontrolling factors, 131, 133

synthesis from synthesis gas over Na-promoted Mn-Ni catalysts, 128, 569

Acetalization

shape-selective, aldehydes by H-ZSM-5 zeolites, 128, 63

Acetylene

hydrochlorination over Au/C catalysts catalyst deactivation, 128, 366 catalyst reactivation, 128, 378

simultaneous oligomerization and polymerization on fluoridated and nonfluoridated Al₂O₃ catalysts, 131, 305

Acid catalysis

TiO₂-SiO₂ activity for, correlation with IR band frequency of silanol bending vibration, **132**, 563

Al₂O₃ and SiO₂, pure and composite, analysis by inverse gas chromatography at infinite dilution, **131**, 433

AlPO₄ catalysts, synthetic and modified, NMR characterization, 130, 642

and basicity

oxides, characterization via selective ring opening of 2-methyloxirane, 129, 303

rare-earth oxides, relationship to catalytic activity for oxidative coupling of methane to C₂-hydrocarbons, **130**, 411

heteropoly compounds, effect on selectivity of acetaldehyde oxidation, 131, 133

H-ZSM-5 zeolites modified with phosphorus, 132, 229

metal oxide surfaces, determination by catalytic decomposition of isopropanol, 131, 190

Ni₂O₅ surface phase and mixed composite oxides with SiO₂, analysis, **129**, 38

SiO₂-supported oxide catalysts, analysis by microcalorimetric measurements of pyridine adsorption, 127, 706

zeolites H-ZSM-22, -48, and -50, 129, 293

Acids

calcined kaolin leached by, preparation and properties, 129, 225

modified NiO-TiO₂ catalysts, catalytic activity, effect of acid strength, 127, 449

oxides, reaction with basic oxides, role in inhibition of vanadium attack on REY zeolites, 129, 269

solid, relative strengths: spectrophotometric approach, 127, 128

Acid sites

on oxygen-modified Mo(111), appearance during hydrogenolysis of methylcyclopropane, 130, 556

in SAPO-5 materials, analysis, 131, 252

in zeolite H-ZSM-5, magic-angle-spinning NMR studies, 127, 34

Active sites

densities on dispersed metal catalysts, determination with single turnover procedure, evaluation, 127, 675

for methanol dehydrogenation to formaldehyde on Na-modified silicalite-1, analysis, 131, 226

Adsorbates

bonding, role in selection of partial and total oxidation pathways, 128, 210

Adsorption

basic molecules on SiO₂ and SiO₂-Al₂O₃, microcalorimetric measurements, **128**, 23

butadiene on Ag/Al₂O₃ catalysts, heat measurements, 128, 148

CH₃, CH₂, and CH on Rh(111) and Ni(111) surfaces, molecular orbital studies, 127, 141

co

Cr/AlPO₄ catalysts, FTIR study, 128, 303

K-Co-Rh-Mo/Al₂O₃ catalysts for synthesis of higher alcohols, 132, 375

Pd/Al₂O₃ catalysts: CH₃O formation and hydrogenation rates, **132**, 145

Pt colloids, IR and NMR studies: surface chemistry, 129, 530

Rh/ZrO₂ catalysts, 132, 275

RuCu/SiO₂ catalysts, IR spectroscopy: catalyst characterization, 129, 402

W/Al₂O₃ reduced catalysts, IR study, 131, 234

CO and H₂ on Pd/Al₂O₃ catalysts: CH₃O formation and hydrogenation rates, **132**, 145

ethylene on Ag/Al₂O₃ catalysts, heat measurements, 128, 148

¹ Boldface numbers indicate appropriate volume; lightface numbers indicate pagination.

and impregnation, Pd(II) compounds onto Al₂O₃, effect of calcination temperature of alumina, **132**, 422

metal ions, relationship to catalytic properties of Ni/ C catalysts, 127, 22

NO and CO on

 $\text{CuO}/\gamma\text{-Al}_2\text{O}_3$ catalysts, selectivity, low-temperature IR spectroscopic study, **132**, 85

Rh/ZrO₂ catalysts, 132, 275

 W/Al_2O_3 reduced catalysts, IR study, 131, 234 oxygen on

Ag/Al₂O₃ catalysts, heat measurements, **128**, 148 catalytically promoted gasification chars, microcalorimetric study, **132**, 388

Pt catalyst surfaces, analysis in situ with solid electrolyte cyclic voltammetry, 129, 67

Pt powder and Pt/SiO₂, enthalpy changes, **129**, 31

phosphoric acid on γ -Al₂O₃, mechanism, **132**, 465 2-propanamine on fluid catalytic cracking catalysts, **129**, 88

pyridine onto SiO₂-supported oxide catalysts, microcalorimetric measurement: analysis of catalyst acidity, **127**, 706

re-, see Readsorption

SO₂ on Pt-, Rh-, and Ru-coated Au catalysts: surface-enhanced Raman spectroscopy at transition metal-gas interfaces, 130, 62

various substances on SAPO-5 materials: analysis of acid sites, 131, 252

water on polycrystalline Cu: relevance to water-gas shift reaction, 130, 514

on zeolites, simulation, 127, 101

Aerogels

Fe₂O₃-Cr₂O₃-Al₂O₃, selective catalytic reduction of NO by NH₃, **130**, 319

Agglomeration

IrO₂ in Pt-Ir catalysts, effect of chloride and water vapor, 131, 378

Alcohols

conversion to ethers over Ni/SiO₂ catalysts, role of catalyst properties, **128**, 337

higher, synthesis

over Cu/ZnO/Cr₂O₃ catalysts, effects of CO₂, methanol, and alkali promoters, **130**, 616

K-Co-Rh-Mo/Al₂O₃ catalysts for, adsorption of CO, **132**, 375

primary, liquid-phase oxidation over expanded lattice Ru pyrochlore oxide catalysts with molecular oxygen, 127, 393

Aldehydes

shape-selective acetalization by H-ZSM-5 zeolites, 128, 63

synthesis from synthesis gas over Na-promoted Mn-Ni catalysts, 128, 569

Alkali metals

exchanged zeolites, formation of ketenes from carboxylic acids, 129, 438 promoter concentration, effect on higher alcohol synthesis over $\text{Cu/ZnO/Cr}_2\text{O}_3$ catalysts, 130, 616

Alkanes

bifunctional reactions on tungsten carbides modified by chemisorbed oxygen, 131, 523

cracking over zeolite-based catalyst, primary products, quantitative analysis, 132, 409

normal, reactions on β-W₂C and WC catalysts, effects of surface oxygen, 130, 498

Alkenes

selective hydrogenation on Pd complexes anchored in montmorillonite, 130, 41

Alkylation

alkylbenzenes, benzene, and halobenzenes by protonated mordenite pretreated with chlorofluorocarbons, **132**, 512

toluene over H-ZSM-5 modified by chemical vapor deposition of silicon alkoxide, shape selectivity, 128, 551

Alkylbenzenes

alkylation by protonated mordenite pretreated with chlorofluorocarbons, 132, 512

Alkynes

selective hydrogenation on Pd complexes anchored in montmorillonite, 130, 41

Alloys

Co-Ni, catalytic activity and selectivity for CO hydrogenation, support effects, 130, 202

formation in supported Pt-Sn catalysts, Mössbauer studies, 128, 1

Ru-Me (Me = Ge,Pb,Sb,Si,Sn), Al₂O₃-supported, catalytic properties, **128**, 275

Alumina, see Aluminum oxide

Aluminum

-Cu-Zn catalysts, analysis: in situ cell for combined X-ray diffraction and on-line catalysis tests, 132, 524

extra-framework species, effect on zeolite Y activity, selectivity, and stability in *n*-heptane cracking, **130**, 471

role in Cu-catalyzed direct synthesis of methylchlorosilanes, 128, 468

Aluminum niobate

preparation and characterization as support for hydrocarbon oxidation, 130, 293

Aluminum oxide

acid-base properties, characterization via selective ring opening of 2-methyloxirane, 129, 303

acidic properties, analysis by inverse gas chromatography at infinite dilution, 131, 433

calcination, temperature of, effect on adsorption/impregnation of Pd(II) compounds onto Al₂O₃, 132, 422

carbon-covered and noncovered, support of Ni-Mo-F additives, comparison with carbon supports: carbon deposition and model compound reaction studies, 128, 537 catalysts with low levels of promoters, deactivation during hydrodemetallation

associated metal sulfide deposits, characterization, 132, 21

model compound kinetic studies, 132, 1

coated SiO₂, support of Pt catalysts, analysis, 129, 447

-Cr₂O₃-Fe₂O₃ aerogels, selective catalytic reduction of NO by NH₃, **130**, 319

fluoridated and nonfluoridated catalysts, acetylene conversion, mechanism: simultaneous oligomerization and polymerization, 131, 305

modified, support of Pd catalysts, methanol decomposition, TPD and XPS analyses, 128, 198

porous anodic films, metal deposition under hydrotreating conditions, visualization, 127, 178

-Pt-Sn reforming catalysts, electron microdiffraction study, 129, 257

role in skeletal isomerization of 3,3-dimethyl-1-butene on CoMo/Al₂O₃ oxided and sulfided catalysts, 130, 212

-SiO₂

acidic properties, analysis by inverse gas chromatography at infinite dilution, 131, 433

adsorption of basic molecules, microcalorimetric measurements, 128, 23

support of Pd catalysts, hydrogenation of toluene and xylene

kinetics and xylene isomerization, 127, 251 reaction model, 127, 267

SiO₂-supported catalysts, acidity, analysis by microcalorimetric measurements of pyridine adsorption, 127, 706

support of

Ag catalysts, adsorption of butadiene, ethylene, and oxygen, heat measurements, 128, 148

Co catalysts, CO hydrogenation, role of catalyst surface structure and dispersion, 128, 231

CoMo catalysts, deactivation during hydrodemetallation

associated metal sulfide deposits, characterization, 132, 21

model compound kinetic studies, 132, 1

Cu catalysts, CO oxidation, associated structural changes in catalyst, 129, 297

K-Co-Rh-Mo catalysts for synthesis of higher alcohols, adsorption of CO, 132, 375

Mo sulfided catalysts, hydrodenitrogenation activity and selectivity, effect of phosphate, 131, 412

Mo₂C catalysts, preparation and benzene hydrogenation activity, 128, 126

Ni catalysts

formation and decomposition of methoxy species, 127, 732

partial oxidation of methane to CO and H_2 , 132, 117

sulfided, hydrodenitrogenation activity and selectivity, effect of phosphate, 131, 412

Ni-(Cu,Pb,Sb) bimetallic catalysts, conversion of cyclohexane, 129, 58

Ni-Mo catalysts

phosphorus-promoted precursors, for hydrotreating reactions, FT-IR and solid-state NMR studies, 132, 498

sulfided, hydrodenitrogenation activity and selectivity, effect of phosphate, **131**, 412

noble metal catalysts, methane oxidation, effects of Ce additives, 132, 287

Pd catalysts

active site densities, determination with single turnover procedure, 127, 675

adsorption sites: CH₃O formation and hydrogenation rates, 132, 145

alloyed with Ge, Pb, Sb, or Sn from organometallics, gas-phase dehydrogenation of valylene and isoprene, 129, 47

gas-phase hydrogenation of 2-ethyl-hexenal, effects of oxygen, 132, 402

heptane oxidation, effects of catalyst structure and carbon deposition, 130, 374

toluene and xylene hydrogenation kinetics and xylene isomerization, 127, 251

toluene and xylene hydrogenation reaction model, 127, 267

P₂O₅ catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, **129**, 12

Pt catalysts

carbon deposition on Pt particles, 123, 486; erratum, 127, 790

CO oxidation, dynamic studies, 127, 307

gas-phase hydrogenation of 2-ethyl-hexenal, effects of oxygen, 132, 402

heptane oxidation, effects of catalyst structure and carbon deposition, 130, 374

microchemisorption studies, apparatus, 127, 788 sulfur-aided SMSI, analysis, 130, 662

Pt-Sn catalysts

alloy formation in, Mössbauer study, 128, 1 chemisorption and XPS studies, 127, 287 neopentane reactions, 132, 451

Rh catalysts

active site densities, determination with single turnover procedure, 127, 675

gas-phase hydrogenation of 2-ethyl-hexenal, effects of oxygen, 132, 402

Ru catalysts

CO₂ methanation, FTIR study, **129**, 130 gas-phase hydrogenation of 2-ethyl-hexenal, effects of oxygen, **132**, 402

Ru-Me alloys (Me = Ge,Pb,Sb,Si,Sn), catalytic properties, 128, 275

V₂O₅ catalysts, surface oxide-support interactions at surface redox sites, **129**, 307

W catalysts, reduced, adsorption of CO and NO, IR study, 131, 234

WO₃ catalysts, surface area determination, 129, 195

-TiO₂, support of Ir and Pt catalysts, structure and activity, 127, 201

α-Aluminum oxide

support of Rh catalysts, properties, effects of metal particle size and support: CO-O₂ and CO-NO reactions, 128, 526

β"-Aluminum oxide

support of Pt catalysts, activity, non-faradaic electrochemical modification, 128, 415

γ-Aluminum oxide

adsorption of phosphoric acid, mechanism, **132**, 465 Mo- and Pt-modified model catalysts, electron spectroscopic studies, **130**, 332

stabilization toward thermal sintering by silicon addition, 127, 595

support of

Co sulfided catalysts, structure and hydrodesulfurization activity, effect of phosphorus, **128**, 559

Co-Mo catalysts

sulfided, structure and hydrodesulfurization activity, effect of phosphorus, 128, 559

tetrahydrothiophene desulfurization, temporal analysis of products, 127, 190

Cu-Ni bimetallic catalysts, EXAFS study in situ, 131, 491

CuO catalysts, selective adsorption of NO and CO, low-temperature IR spectroscopy, **132**, 85 Fe high loading catalysts, reduction/oxidation, **128**, 218

Mo catalysts, temperature reduction, subsequent determination of Mo(0), 130, 653

MoS₂ catalysts, Mo loading, effect on diene hydrogenation: evidence of elementary ensemble site, **129**, 511

Pt catalysts

1-hexene isomerization, effects of reaction mixture density and temperature, 131, 445

H₂ and O₂ diffusion into and chemisorption by, ¹²⁹Xe NMR study, **128**, 447

propane oxidation, kinetics, effects of Pt concentration and particle size, 131, 243

with very small surface area, area determination by CO-H₂ titration, letter to editor, **127**, 457; reply, **127**, 460

Rh catalysts

preparation by co-impregnation with HF, 128,

prepared by co-impregnation, NO reduction and SO₂ poisoning, 128, 48

 V_2O_5 catalysts, monolayer structure, IR spectroscopic analysis with probe molecules, 127, 665

V-Sb-Bi oxide catalysts, ammoxidation of alkyl-

aromatic hydrocarbons, dehydrogenation mechanism, 127, 354

surfaces, MoO₃ spreading, EXAFS study, **130**, 192 δ-Aluminum oxide

and spinels CoAl₂O₄ and NiAl₂O₄, comparative surface properties, FTIR study, 131, 167

support of

Cu prereduced catalysts, CO oxidation, 131, 22 CuCl₂ unreduced catalysts, CO oxidation, 127,

Pd reduced catalysts, CO oxidation, 131, 1

PdCl₂ unreduced catalysts, CO oxidation, 127, 465

PdCl₂-CuCl₂ unreduced catalysts, CO oxidation, 127, 489

Pd-Cu catalysts, CO oxidation, 131, 36

η-Aluminum oxide

catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, 129, 12

support of Pt catalysts

chemisorption properties and reactivities, effect of sulfur poisoning, 130, 359

with very small surface area, area determination by CO-H₂ titration, letter to editor, **127**, 457; reply, **127**, 460

θ -Aluminum oxide

support of Rh catalysts, properties, effects of metal particle size and support: CO-O₂ and CO-NO reactions, **128**, 526

Aluminum phosphate

amorphous, characterization as catalyst supports, 128, 293

catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, 129, 12

support of Cr catalysts, CO adsorption, FTIR study, 128, 303

synthetic and modified, NMR characterization, 130, 642

Ammonia

adsorption on

SAPO-5 materials: analysis of acid sites, 131, 252

SiO₂ and SiO₂-Al₂O₃, microcalorimetric measurements, **128**, 23

IR spectroscopy, in analysis of monolayer structure of V₂O₃/γ-Al₂O₃ catalysts, 127, 665

reduction of NO

at atmospheric pressures over Pt polycrystalline foils as model Pt catalysts, 132, 440

over clean and vanadium oxide-coated Pt foil catalysts, 129, 186

selective catalytic, over Fe₂O₃-Cr₂O₃-Al₂O₃ aerogels, **130**, 319

synthesis over Fe/TiO₂ catalysts, kinetics, effects of hydrazine pretreatment and alkali promotion of catalysts, **127**, 227

Ammonium ion

microporous salts of 12-tungstophosphoric and 12molybdophosphoric acid catalysts, ion-exchange properties, 128, 69

Ammoxidation

alkylaromatic hydrocarbons over V-Sb-Bi oxide/ γ -Al₂O₃ catalysts, dehydrogenation mechanism, 127, 354

2-methylpyrazine over Sb-V-Mn-O catalysts, TPD-TPR-MS mechanistic study, **130**, 392

toluene on V₂O₅ catalysts supported on anatase, rutile, and TiO₂(B) polymorphs, ESR and HREM catalyst characterization, 132, 128

Ammoximation

cyclohexanone over titanium silicalite TS-1 catalysts, properties, 131, 394

Anisole

and aldehydes, condensation over USY zeolites, 130, 138

hydroxylation over TS-2 catalysts with MEL structure, 130, 440

Antimony

-Ni bimetallic catalysts supported on Al₂O₃, conversion of cyclohexane, 129, 58

from organometallics, alloyed with Pd in Al₂O₃-supported bimetallic catalysts, gas-phase dehydrogenation of valylene and isoprene, 129, 47

-Ru alloys, Al₂O₃-supported, catalytic properties, 128, 275

-V-Bi oxide catalysts, γ-Al₂O₃-supported, ammoxidation of alkylaromatic hydrocarbons, dehydrogenation mechanism, 127, 354

-V-Mn-O catalysts, 2-methylpyrazine ammoxidation, TPD-TPR-MS mechanistic study, 130, 392

Antimony oxide

dispersed on TiO₂, propene oxidation over, structural and kinetic studies, 127, 698

Antimony tetraoxide

-MoO₃ catalysts, N-ethyl formamide dehydration active sites and role of spillover oxygen, 132, 183 catalyst preparation, characterization, and synergism, 132, 157

mathematical model based on remote control mechanism, comparison with experimental results, 132, 200

α-Antimony tetraoxide

and SnO₂, phase cooperation in selective oxidation of isobutene to methacrolein: analysis of

coprecipitated catalysts, 132, 360 impregnated catalysts, 132, 343

mechanically mixed catalysts, 132, 319

Aqueous media

photocatalyzed mineralization of cresols in, mediation by irradiated TiO₂, **128**, 352

Argon

quasi-equilibrium sorption on coked H-Y zeolite, analysis, 128, 436

Aromatic compounds

formation by dehydrocyclization of C₆-C₈ *n*-paraffins over TiO₂-ZrO₂ catalysts, **130**, 577

Aromatization

n-hexane by Pt clusters supported on high surface area MgO, 132, 269

Arsenic trioxide

interaction with deNO_x-catalysts, X-ray absorption and diffuse reflectance IR spectroscopic studies, 129, 168

Arsenious oxide, see Arsenic trioxide

В

Barium

modified Al₂O₃, support of Pd catalysts, methanol decomposition, TPD analysis, **128**, 198

Barium oxide

-CaO-NaOH catalysts, surface interaction with methane, 129, 106

Bases

oxides, reaction with acidic oxides, role in inhibition of vanadium attack on REY zeolites, 129, 269

Basicity

and acidity

oxides, characterization via selective ring opening of 2-methyloxirane, 129, 303

rare-earth oxides, relationship to catalytic activity for oxidative coupling of methane to C₂-hydrocarbons, **130**, 411

metal oxide surfaces, determination by catalytic decomposition of isopropanol, 131, 190

Basic sites

on TiO_2 , generation by reduction with H_2 , 127, 221 Beidellite

pillaring, effect on conversion of trimethylbenzenes, 128, 487

Benzaldehyde

condensation with

benzene derivatives over USY zeolites, analysis, 130, 138

ethyl acetoacetate, cyanoacetate, and malonate over alkaline-substituted sepiolites: evaluation as strong base catalysts, **130**, 130

formation by selective oxidation of toluene over V-Ag catalysts, analysis, 129, 426

Benzene

and aldehydes, condensation over USY zeolites, 130, 138

alkylation by protonated mordenite pretreated with chlorofluorocarbons, 132, 512

hydrogenation over Mo₂C/Al₂O₃ catalysts, **128**, 126 hydroxylation over TS-2 catalysts with MEL structure, **130**, 440

isopropylation over large-pore zeolites, activity and deactivation studies, **132**, 79

reaction with toluene over H-ZSM-5 zeolite, retained products, 127, 113

Benzophenone azine

hydrolysis to hydrazine, sulfonated resins as immobilized phase-transfer catalysts for, preparation, 130, 547

Beryllium oxide

acid-base properties, characterization via selective ring opening of 2-methyloxirane, 129, 303

Bismuth

 $Bi_{2+x}Ru_{2-x}O_{7-y}$ catalysts

liquid-phase oxidation of vicinal diols, primary alcohols, and related substrates with molecular oxygen, 127, 393

surface analysis by electron microscopy, XPS, and temperature-programmed reduction and oxidation, 127, 421

-V-Sb oxide catalysts, γ-Al₂O₃-supported, ammoxidation of alkylaromatic hydrocarbons, dehydrogenation mechanism, 127, 354

Bismuth molybdate

catalyst stability at elevated temperatures in air and under reaction conditions for partial oxidation of propylene, 132, 536

Bonds

C—C, formation and cleavage on metal surfaces, mechanisms: formation of butenes and hexenes from linear and branched pentenes over Ru/ SiO₂ catalysts, 132, 472

Book reviews

Adsorption Engineering. M. Suzuki, 1990, 127, 463 Chemistry and Physics of Solid Surfaces VIII. R. Vanselow and R. Howe (Eds.), 1990, 130, 318

New Developments in Selective Oxidation. G. Centi and F. Trifirò (Eds.), Studies in Surface Science and Catalysis, Vol. 55 (B. Delmon and J. T. Yates, Jr., Series Eds.), 1990, 129, 313

1.3-Butadiene

heat of adsorption on Ag/Al₂O₃ catalysts, direct measurement, **128**, 148

hydrogenation on

Pd particles evaporated on carbonaceous supports, particle size effect, 129, 1

Pt catalysts, analysis, 129, 356

Butane

conversion over ZrO₂/SO₄²⁻ solid superacid catalyst in presence of hydrogen, analysis, **131**, 199

cracking on HZSM-5 zeolites, analysis, 130, 423 hydrogenolysis over Pt/TiO₂ and sulfided Pt/Al₂O₃ catalysts, site blocking effects, 130, 359

linear and branched compounds, homologation and hydrogenolysis on Ru/SiO₂ catalysts, **131**, 457 oxidation

to maleic anhydride over V-P-O catalysts, location and function of Zn as promoter, 130, 347 partial, to maleic anhydride, phosphorus-vanadium mixed oxide catalysts for, synthesis and characterization, 128, 248

over β-VOPO₄ catalysts, reactive oxygen lattice sites for, analysis, 128, 113

skeletal isomerization over ZrO₂ catalysts promoted by Pt and SO₂⁻, 130, 257

tert-Butanol

dehydration on zeolite NaH-ZSM-5, kinetics, 127, 377

Butenes

formation from linear and branched pentenes over Ru/SiO₂ catalysts: mechanisms of C—C formation and cleavage on metal surfaces, **132**, 472

linear and branched, homologation and hydrogenolysis on Ru/SiO₂ catalysts, 131, 457

 \mathbf{C}

Calcination

Al₂O₃, temperature of, effect on adsorption/impregnation of Pd(II) compounds onto alumina, 132, 422

Ni/MgO catalysts, temperature effects on catalyst structure and morphology, 132, 58

Rh/SiO₂ catalysts promoted by Nb₂O₅ and V₂O₅, comparison, **127**, 276

Calcium

Ca²⁺, effect on formation of electron-deficient Pd-H⁺ adducts in zeolite Y, 128, 13

promoted gasification chars, adsorption of oxygen, microcalorimetric study, 132, 388

Calcium oxide

acid-base properties, characterization via selective ring opening of 2-methyloxirane, 129, 303

-BaO-NaOH and complexed with NaOH, surface interaction with methane, 129, 106

-La₂O₃ catalysts, oxidative coupling of methane, effect of bulk and surface properties, 128, 512

Na-doped catalysts for oxidative coupling of methane, identification of active phase, 128, 264

Carbon

activated, support of

Ni-Mo/C sulfided catalysts, thiophene hydrodesulfurization, role of Ni, 131, 326

Pt catalysts, preparation, 131, 335

amorphous and graphitic, Pd particles evaporated on, catalysis of 1,3-butadiene hydrogenation, particle size effect, 129, 1

-carbon single bonds

breaking during thermal decomposition of chemisorbed species from ethane on Pt/SiO₂ catalyst, IR spectroscopic study, 127, 445

formation and cleavage on metal surfaces, mechanisms: formation of butenes and hexenes from linear and branched pentenes over Ru/SiO₂ catalysts, **132**, 472

deposition on

supported Pd and Pt catalysts, effects on heptane oxidation, 130, 374

supported Pt particles, characterization, 123, 486; erratum, 127, 790

filaments, formation on Cu-Ni and Ni catalysts: catalyst interaction with hydrocarbons, **131**, 60 graphite, *see* Graphite

support of

Au catalysts, acetylene hydrochlorination catalyst deactivation, 128, 366 catalyst reactivation, 128, 378

Co and Co-Mo sulfided catalysts, structure and hydrodesulfurization activity, effect of phosphorus, 128, 559

CuCl₂ unreduced catalysts, CO oxidation, 127, 465

Mo catalysts, hydrodesulfurization and Fischer-Tropsch activities, effects of carbon surface and structural properties, 129, 330

Ni catalysts, relationship of catalyst properties to metal ion adsorption, 127, 22

Ni-Mo-F additives, comparison with carboncovered and noncovered Al₂O₃ supports: carbon deposition and model compound reaction studies, 128, 537

PdCl₂ unreduced catalysts, CO oxidation, 127, 465

PdCl₂-CuCl₂ unreduced catalysts, CO oxidation, 127, 489

Pt catalysts, H₂ chemisorption, effects of carbon support and mean Pt particle size, **128**, 397

transition metal sulfide catalysts, hydrodenitrogenation of

cyclohexylamine, decahydroquinoline, and *O*-propylaniline, **127**, 605 quinoline, **127**, 619

Carbonaceous deposits

role in ethylene hydrogenation over metallic Mo catalysts, 128, 320

Carbonate

presence as surface species during CO oxidation on deactivated Rh(111) catalysts, evidence, 128, 405

Carbon dioxide

effect on higher alcohol synthesis over Cu/ZnO/ Cr₂O₃ catalysts, **130**, 616

electrocatalytic conversion to methane and O₂ with oxygen ion-conducting electrolyte, **129**, 216

gasification of graphite over transition metal oxide catalysts, 130, 161

IR spectroscopy, in analysis of monolayer structure of V₂O₃/γ-Al₂O₃ catalysts, **127**, 665

methanation over

Ni/kieselguhr catalysts, analysis in situ with magnetic induction method: experiments and modeling, 127, 576

supported Ru catalysts, FTIR study, 129, 130 Carbon monoxide

adsorbed onto RuCu/SiO₂ catalysts, IR spectroscopy: catalyst characterization, **129**, 402

adsorption on

Cr/AlPO₄ catalysts, FTIR study, 128, 303

K-Co-Rh-Mo/Al₂O₃ catalysts for synthesis of higher alcohols, 132, 375

Pt colloids, IR and NMR studies: surface chemistry, 129, 530

chemisorption on

Pt-Sn/Al₂O₃ catalysts, analysis, 127, 287

Pt/TiO₂ catalysts and sulfided Pt/Al₂O₃ catalysts, site blocking effects, **130**, 359

Rh/La₂O₃ catalysts, support promoter effect, thermal evolution, 127, 719

conversion in water-gas shift reaction: implications of water adsorption on polycrystalline Cu catalysts, 130, 514

heat of adsorption and hydrogenation on Pt/SiO₂ catalysts, effects of Pt crystallite size, **130**, 9 and H₂

adsorption on Pd/Al₂O₃ catalysts: CH₃O formation and hydrogenation rates, 132, 145

chemisorption on surface oxide films at Ru/TiO₂ interface, temperature effects, **130**, 173

formation by partial oxidation of methane over Ni/Al₂O₃ catalysts, **132**, 117

-H₂ titration for determination of very small surface areas, application to Pt/Al₂O₃ catalysts, letter to editor, 127, 457; reply, 127, 460

and H₂O, promoted reaction mechanism in watergas shift reaction: genesis of surface catalysis, 129, 343

hydrogenation

on Co catalysts, role of catalyst surface structure and dispersion, 128, 231

over Co-Ni alloy catalysts, support effects: activity and selectivity of catalysts, 130, 202

Os in basic Y zeolite as stable selective catalyst for, design, 129, 315

over Pt/TiO₂ catalysts: reversal of SMSI state, 128, 186

over Rh/SiO₂ catalysts, effect of pre-adsorbed sulfur, 129, 540

over Ru/KY catalysts, effect of nitromethane addition, 128, 311

induced growth of Pd particles encaged in zeolite Y, EXAFS evidence, 127, 213

interaction with highly dispersed Pt and Rh catalysts, effect of CeO₂, 130, 181

IR spectroscopy, in analysis of monolayer structure of V₂O₅/γ-Al₂O₃ catalysts, **127**, 665

methanation over Ni/kieselguhr catalysts, analysis in situ with magnetic induction method: experiments and modeling, 127, 576

and NO, adsorption on

 CuO/γ - Al_2O_3 catalysts, low-temperature IR spectroscopy, **132**, 85

Rh/ZrO₂ catalysts, 132, 275

W/Al₂O₃ reduced catalysts, IR study, 131, 234

oxidation over

Au/MnO_x and Pt/SnO_x catalysts at low-temperature, comparison, 129, 114

Cu/Al₂O₃ catalysts

associated structural changes in catalyst, 129, 297

kinetics for prereduced catalysts, 131, 22

CuCl₂ unreduced catalysts dispersed on δ-Al₂O₃ and carbon, **127**, 465

 $La_{2-x}Sr_xCuO_{4-\delta}$ superconducting systems between 373 and 523 K, **131**, 582

mixed oxides of Co, Cu, and Mn, effect of surface enrichment, 130, 52

Pd/δ-Al₂O₃ reduced catalysts, 131, 1

PdCl₂ unreduced catalysts dispersed on δ-Al₂O₃ and carbon, **127**, 465

PdCl₂-CuCl₂ unreduced catalysts dispersed on δ-Al₂O₃ and carbon, **127**, 489

Pd-Cu/δ-Al₂O₃ catalysts, 131, 36

Pt catalysts, kinetics and multiple rate states linkage of ultrahigh vacuum and atmospheric

pressure behavior, 127, 553 model development and multiplicity analysis,

127, 524 oscillatory reaction at 10–760 torr, **127**,

512

Pt/Al₂O₃ catalysts, dynamic studies, **127**, 307 Pt/SnO_x catalysts

and Au/MnO_x catalysts at low-temperature, comparison, 129, 114

mechanism, 130, 314

Rh(111) deactivated catalysts, presence of carbonate surface species during, evidence, **128**, 405

over supported Rh catalysts, effects of metal particle size and support, 128, 526

reduction of NO over

 La_2CuO_4/ZrO_2 catalysts, catalyst activity, 132, 560

Rh/CeO₂ catalysts, enhancement by Gd₂O₃ doping of support, **131**, 74

square and hexagonal surfaces, Monte Carlo simulation, 131, 369

supported Rh catalysts, effects of metal particle size and support, **128**, 526

spillover on Ni/Al₂O₃ catalysts: formation and decomposition of methoxy species, **127**, 732

Carbon oxides

interaction with oxygen surface species on LiNiO₂ methane coupling catalysts, 132, 92

Carboxylic acids

formation of ketenes by reaction over alkali metalexchanged zeolites, 129, 438

Ceria, see Ceric oxide

Ceric oxide

acidity/basicity, relationship to catalytic activity for oxidative coupling of methane to C₂-hydrocarbons, 130, 411

effect on interaction of CO and NO with highly dispersed Pt and Rh catalysts, 130, 181

particle size in catalysts, empirical determination by Raman spectroscopy, 130, 310

support of Rh catalysts, NO reduction by CO, enhancement by Gd₂O₃ doping of support, 131, 74

Cerium

additives to Al₂O₃-supported noble metal catalysts, effects on methane oxidation, **132**, 287

Ag_{1.2}V₃Ce_yO_{8+x} catalysts, toluene oxidation, catalytic and spectroscopic studies, **131**, 350

-Pt particles, SiO₂-supported, microstructure and reactivity, 128, 161

-Rh particles, SiO₂-supported, microstructure and reactivity, 128, 161

Cesium

ionic, interaction with 12-molybdophosphoric acid/ SiO₂ catalysts, 128, 479

microporous salts of 12-tungstophosphoric and 12molybdophosphoric acid catalysts, ion-exchange properties, 128, 69

modified Al₂O₃, support of Pd catalysts, methanol decomposition, TPD and XPS analyses, **128**, 198

promoted Fe/TiO₂ catalysts, NH₃ synthesis, kinetics, effect of hydrazine pretreatment, 127, 227 substituted sepiolites, evaluation as strong base catalysts, 130, 130

Cesium vanadate

SiO₂-supported catalysts, ethane oxidation, 129,

Chemical vapor deposition

silicon alkoxide on H-ZSM-5 zeolites, effect on shape selectivity for toluene alkylation and disproportionation, 128, 551

Chemisorption

CO by

Pt-Sn/Al₂O₃ catalysts, analysis, **127**, 287

Pt/TiO₂ catalysts and sulfided Pt/Al₂O₃ catalysts, site blocking effects, **130**, 359

Rh/La₂O₃ catalysts, support promoter effect, thermal evolution, **127**, 719

surface oxide films at Ru/TiO₂ interface, temperature effects, **130**, 173

H on Pt/TiO₂ catalysts and sulfided Pt/Al₂O₃ catalysts, site blocking effects, **130**, 359

H₂ by

Pt/γ-Al₂O₃ pellets, ¹²⁹Xe NMR study, **128**, 447 Pt/C catalysts, effects of carbon support and mean Pt particle size, **128**, 397

Pt-Sn/Al₂O₃ catalysts, analysis, **127**, 287

surface oxide films at Ru/TiO₂ interface, temperature effects, **130**, 173

micro-, see Microchemisorption

O₂ by

Pt/ γ -Al₂O₃ pellets, ¹²⁹Xe NMR study, **128**, 447 Pt–Sn/Al₂O₃ catalysts, analysis, **127**, 287

selective, NO and N₂O on supported CuO catalysts prepared from copper(II) acetylacetonate, 130, 447

Chloranil

modified Mg₂Ni, sorbed H₂, protium-deuterium exchange in, mechanism, 129, 300

Chloride

and water vapor, effect on Pt-Ir interaction and IrO₂ agglomeration in bimetallic Pt-Ir reforming catalysts, **131**, 378

Chlorine

promoted Li⁺-MgO catalysts, oxidative dehydrogenation of ethane, **131**, 513

Chlorobenzene

and aldehydes, condensation over USY zeolites, 130, 138

Chlorofluorocarbons

protonated mordenite pretreated with, catalysis of alkylation of benzene, alkylbenzenes, and halobenzenes, 132, 512

3-Chlorosalicylic acid

photocatalytic degradation over TiO₂ membranes supported on glass, kinetic studies, 127, 167

Chromia, see Chromic oxide

Chromic oxide

-Cu-ZnO catalysts, higher alcohol synthesis, effects of CO₂, methanol, and alkali promoters, 130, 616

-Fe₂O₃-Al₂O₃ aerogels, selective catalytic reduction of NO by NH₃, **130**, 319

ZrO₂-supported catalysts

ESR spectroscopic study of Cr species, 127, 761 preparation and characterization, 127, 744 propene hydrogenation, 127, 777

Chromium

AlPO₄-supported catalysts, CO adsorption, FTIR study, 128, 303

-Pd catalysts, SiO₂-supported, characterization and catalytic properties, 128, 99

 -Zn-O, support of Pd catalysts, 2-methylpyrazine synthesis, TPD-TPR-MS mechanistic study, 130, 403

Cinchona

modified Pt/SiO₂ catalysts, methyl pyruvate hydrogenation, variation of activity and optical yield with experimental variables, 128, 387

Cinnamaldehyde

hydrogenation over zeolite-supported metals, selectivity, geometric and electronic effects, 131, 401

Clays

iron oxide pillared, with large gallery height, synthesis and properties as Fischer-Tropsch catalysts, 130, 29

Coal char

gasification, catalytically promoted, adsorption of oxygen, microcalorimetric study, **132**, 388

Cobalt

Al₂O₃-supported catalysts

CO hydrogenation, role of catalyst surface structure and dispersion, 128, 231

sulfided, structure and hydrodesulfurization activity, effect of phosphorus, 128, 559

carbon-supported catalysts

particles, reactivity during gasification, in situ electron microscopic analysis, 128, 137

sulfided, structure and hydrodesulfurization activity, effect of phosphorus, 128, 559

-K-Rh-Mo, Al₂O₃-supported catalysts for synthesis of higher alcohols, adsorption of CO, 132, 375

mixed oxides with Cu and Mn, surface enrichment, effect on CO oxidation, 130, 52

-Mo/Al₂O₃ catalysts

deactivation during hydrodemetallation associated metal sulfide deposits, characterization, 132, 21

model compound kinetic studies, 132, 1

oxided and sulfided, skeletal isomerization of 3,3dimethyl-1-butene, role of support, 130, 212

sulfided, structure and hydrodesulfurization activity, effect of phosphorus, 128, 559

tetrahydrothiophene desulfurization, temporal analysis of products, 127, 190

-Mo/C sulfided catalysts, structure and hydrodesulfurization activity, effect of phosphorus, 128, 559

 -Ni alloy catalysts, activity and selectivity for CO hydrogenation, support effects, 130, 202

-Ni-Mo/SiO₂ hydrodesulfurization catalysts, structure and activity, 131, 385

W-supported catalysts, CO hydrogenation, role of catalyst surface structure and dispersion, 128, 231

Cobalt aluminate

and NiAl₂O₄ and δ-Al₂O₃, comparative surface properties, FTIR study, **131**, 167

Cobalt oxides

silicalite impregnated or in situ loaded with, comparison studies, 128, 458

Codeposition

photocatalytic, metals, in synthesis of TiO₂-supported bimetallic catalysts at ambient temperature, **132**, 490

Co-impregnation

with HF, in preparation of Rh/γ-Al₂O₃ catalysts, 128, 34

Coke formation

on Pt/γ-Al₂O₃ catalysts via 1-hexene, effects of reaction mixture density and temperature, **131**, 445 on ZSM-5 zeolites: evidence from NMR spectrometry of sorbed Xe gas, **128**, 520

Colloids

metal, intermediacy in Pt-catalyzed hydrosilylation, morphologic and catalytic studies, 127, 67

Computer techniques

simulation of diffusion and adsorption in zeolites, 127, 101

Condensation

aldehydes with benzene derivatives over USY zeolites, 130, 138

benzaldehyde with ethyl acetoacetate, ethyl cyanoacetate, and ethyl malonate over alkaline-substituted sepiolites: evaluation as strong base catalysts, 130, 130

Coordination sphere

524

Mo⁵⁺ in UV-irradiated Mo/SiO₂ catalysts, EPR study, letter to editor, **131**, 300

Copper

Al₂O₃-supported catalysts, CO oxidation, associated structural changes in catalyst, **129**, 297

δ-Al₂O₃-supported catalysts

prereduced, CO oxidation, 131, 22 unreduced, CO oxidation, 127, 465

based water-gas shift and methanol synthesis catalysts, analysis: in situ cell for combined X-ray diffraction and on-line catalysis tests, 132,

carbon-supported unreduced catalysts, CO oxidation, 127, 465

catalyzed direct synthesis of methylchlorosilanes, role of metallic promoters, 128, 468

Cu(110), clean and oxygen-covered catalysts, oxidative dehydrogenation of alcohols, molecular beam study, 131, 104

effect on V₂O₃/SiO₂ catalysts active for selective reduction of NO, **128**, 574

 -La oxide, ZrO₂-supported catalysts, activity for reaction of NO and CO, 132, 560

 $La_{2-x}Sr_xCuO_{4-\delta}$ superconducting systems, catalytic CO oxidation between 373 and 523 K, 131, 582

mixed oxides with Co and Mn, surface enrichment, effect on CO oxidation, 130, 52

-Ni catalysts

Al₂O₃-supported

conversion of cyclohexane, 129, 58 EXAFS study in situ, 131, 491

interaction with hydrocarbons in formation of carbon filaments, **131**, 60

-Pd particles

δ-Al₂O₃-supported catalysts, CO oxidation, **131**, 36

in zeolite Y, oxidative leaching of Cu atoms from, analysis, 131, 502

-Pd unreduced catalysts

δ-Al₂O₃-supported, CO oxidation, **127**, 489 carbon-supported, CO oxidation, **127**, 489

polycrystalline, water adsorption: relevance to water-gas shift reaction, 130, 514

-Ru/SiO₂ catalysts, characterization by IR spectroscopy of adsorbed CO, **129**, 402

SiO₂-supported catalysts, structure and reactivity, effect of reduction treatment, **131**, 178

-ZnO-Cr₂O₃ catalysts, higher alcohol synthesis, effects of CO₂, methanol, and alkali promoters, 130, 616

ZrO2-supported catalysts prepared from amorphous

precursors, XRD and Raman studies: identification of ZrO₂ modifications, **130**, 657

Copper(II) acetylacetonate

supported CuO catalysts prepared from, selective chemisorption and oxidation/reduction kinetics, 130, 447

Coprecipitation

SnO₂ and α-Sb₂O₄ catalysts prepared by, selective oxidation of isobutene to methacrolein, phase cooperation, **132**, 360

Cracking

alkanes over zeolite-based catalyst, primary products, quantitative analysis, **132**, 409

butanes on HZSM-5 zeolites, analysis, 130, 423

cumene over fluoride promoted Ni-Mo catalysts, comparison of supports, 128, 537

n-heptane over Y zeolites: effect of extra-framework Al species on zeolite activity, selectivity, and stability, **130**, 471

hexane on *in situ* loaded and impregnated silicalitecobalt oxides, comparison, **128**, 458

paraffins over zeolites: relationship of catalyst properties to performance, 127, 51

Cresols

photocatalyzed mineralization in aqueous media by irradiated TiO₂, analysis, **128**, 352

Cumene

cracking and hydrocracking over fluoride promoted Ni-Mo catalysts, comparison of supports, 128, 537

dealkylation over TiO₂-SiO₂ catalysts, catalyst activity, correlation with IR band frequency of silanol bending vibration, **132**, 563

Cupric oxide

γ-Al₂O₃-supported catalysts, selective adsorption of NO and CO, low-temperature IR spectroscopy, **132**, 85

Cab-O-Sil-supported catalysts, prepared from copper(II) acetylacetonate, selective chemisorption and oxidation/reduction kinetics, 130, 447

Cyclization

ethylenediamine and propylene glycol over palladized Zn-Cr-O catalysts in synthesis of 2methylpyrazine, TPD-TPR-MS mechanistic study, 130, 403

Cyclohexane

conversion on Ni-(Sb,Pb,Cu)/Al₂O₃ bimetallic catalysts, **129**, 58

oxidative dehydrogenation over vanadate catalysts, 128, 287

Cyclohexanone

ammoximation over titanium silicalite TS-1 catalysts, properties, 131, 394

Cyclohexene

epoxidation

by oxoperoxometallates under phase-transfer conditions, 127, 42

polymer-supported Mo and V catalysts for, activation, activity, and stability, 131, 115

oxidation with O_2 over polyoxoanion-supported atomically dispersed transition metal catalysts, 128, 84

Cyclohexylamine

hydrodenitrogenation over carbon-supported transition metal sulfide catalysts, 127, 605

1,5-Cyclooctadiene

isomerization on Ir₄(CO)₁₂/SiO₂ catalysts, reaction yield optimization, kinetic approach, **129**, 288 Cyclopropane

hydrogenation on Rh/La₂O₃ catalysts, support promoter effect, thermal evolution, **127**, 719

transient diffusion, sorption, and desorption in NaX zeolite, 131, 94

D

Deactivation

Au catalysts during hydrochlorination of acetylene, mechanism, 128, 366

catalysts during hydrodemetallation, associated metal sulfide deposits, random-spheres model, 132, 41

CoMo/Al₂O₃ and promoted Al₂O₃ catalysts during hydrodemetallation

associated metal sulfide deposits, characterization, 132, 21

model compound kinetic studies, 132, 1

large-pore zeolites during benzene isopropylation, analysis, 132, 79

Ru/TiO₂ catalysts during Fischer-Tropsch synthesis, isotopic tracer study, 130, 597

sulfuric acid catalysts, ESR studies, 132, 263 Dealkylation

cumene over TiO₂-SiO₂ catalysts, catalyst activity, correlation with IR band frequency of silanol bending vibration, **132**, 563

Dealumination

NH₄NaY zeolite by hydrothermal treatment, kinetic study, **130**, 459

Y zeolites: effect of extra-framework Al species on zeolite activity, selectivity, and stability in *n*-heptane cracking, **130**, 471

Decahydroquinoline

hydrodenitrogenation over carbon-supported transition metal sulfide catalysts, 127, 605

Decarbonylation

acetaldehyde and ethanol on Rh(111) catalyst surface, divergent pathways, 130, 528

Decomposition

1,1-dimethylhydrazine and methylhydrazine on transition metal catalysts, 129, 25

H₂O₂ over MnO₂ and Mn(OH)₂, homogeneous and heterogeneous catalysis in, observation, **131**, 88 isopropanol, in determination of surface acidity and

basicity of metal oxide catalysts, 131, 190 methanol over Pd catalysts supported on modified

methanol over Pd catalysts supported on modified Al₂O₃, TPD and XPS analyses, **128**, 198

methoxy species on Ni/Al₂O₃ catalysts, 127, 732 NO over Cu-zeolites, 129, 202

2-propanol on *in situ* loaded and impregnated silicalite-cobalt oxides, comparison, **128**, 458

thermal, chemisorbed species from ethane on Pt/ SiO₂ catalysts, associated breaking of C—C bonds, IR spectroscopic study, **127**, 445

Dehydration

tert-butanol on zeolite NaH-ZSM-5, kinetics, 127, 377

N-ethyl formamide on MoO₃-Sb₂O₄ catalysts active sites and role of spillover oxygen, **132**, 183 catalyst preparation, characterization, and synergism, **132**, 157

mathematical model based on remote control mechanism, comparison with experimental results, 132, 200

isopropanol, catalysis with AlNbO₄ as support, evaluation, **130**, 293

2-propanol over TiO₂-SiO₂ catalysts, catalyst activity, correlation with IR band frequency of silanol bending vibration, **132**, 563

vapor-phase, ethylene glycol, acidic catalysts for, application to pyruvic acid synthesis, **129**, 12

Dehydrocyclization

n-alkanes on β -W₂C and WC catalysts, effects of surface oxygen, **130**, 498

C₆-C₈ *n*-paraffins to aromatics over TiO₂-ZrO₂ catalysts, **130**, 577

Dehydrogenation

methanol to formaldehyde on Na-modified silicalite-1, active sites, 131, 226

oxidative, see Oxidative dehydrogenation

DeNO_r catalysts

interaction with As₂O₃, X-ray absorption and diffuse reflectance IR spectroscopic studies, **129**, 168

Density

reaction mixture, effects on 1-hexene isomerization over Pt/ γ -Al₂O₃ catalysts, **131**, 445

Deposition

carbon on

supported Pd and Pt catalysts, effects on heptane oxidation, 130, 374

supported Pt particles, 123, 486; erratum, 127, 790

co-, see Codeposition

metal, in porous anodic alumina films under hydrotreating conditions, visualization, 127, 178

-precipitation, Ni/SiO₂ catalysts prepared by, adsorbed state of Ni(II) ions, EXAFS characterization, 130, 21

Depth profiling

catalyst samples: XPS-based model for sputtering behavior of powder materials, 130, 627

Desorption

temperature-programmed, see Temperature-programmed desorption

transient, cyclopropane in NaX zeolite, analysis, 131, 94

Desulfurization

effect on hydrogen activation on unsupported RuS₂ catalysts, 132, 253

tetrahydrothiophene on Co-Mo/γ-Al₂O₃ catalysts, temporal analysis of products, **127**, 190

Deuterium

exchange in methylhydrazine and 1,1-dimethylhydrazine on transition metal catalysts, 129, 25

-H exchange in H₂ in gas phase and sorbed by chloranil-modified Mg₂Ni, mechanism, 129, 300

Deuterogenation

ethene over Pt/SiO₂ catalysts, promotion by Na, 131, 276

Dibenzothiophene

hydrodesulfurization on hydrotreating catalysts, kinetics, 128, 581

Dienes

hydrogenation over MoS₂/γ-Al₂O₃ catalysts, effect of Mo loading: evidence of elementary ensemble site, **129**, 511

Diffusion

H₂ and O₂ into pores of Pt/γ-Al₂O₃ pellets, ¹²⁹Xe NMR study, **128**, 447

surface, see Surface diffusion

transient, cyclopropane in NaX zeolite, analysis, 131, 94

in zeolites, simulation, 127, 101

Diffusivity

effective, in catalyst pellets: model porous structures and transport simulation techniques, **129**, 457

Dimerization

ethylene over titanium butoxide/triethylaluminum catalysts, kinetics, 132, 68

3,3-Dimethyl-1-butene

skeletal isomerization on oxided and sulfided CoMo/ Al₂O₃ catalysts, role of support, **130**, 212

1,1-Dimethylhydrazine

deuterium exchange and decomposition on transition metal catalysts, 129, 25

3,3-Dimethylpentane

reaction on WC and β-W₂C catalysts, pathways, effects of surface oxygen, 130, 86

Diols

vicinal, liquid-phase oxidation over expanded lattice Ru pyrochlore oxide catalysts with molecular oxygen, 127, 393

Dispersion

K on Ru/SiO₂ catalysts, 130, 283

role in CO hydrogenation on Co catalysts, 128, 231 Dispersions

aqueous, containing polycrystalline solids, flow of reflected and absorbed photons in heterogeneous photocatalysis, experimental determination, 127, 332

Disproportionation

toluene over H-ZSM-5 modified by chemical vapor deposition of silicon alkoxide, shape selectivity, 128, 551 1,2,4-trimethylbenzene on montmorillonite and beidellite, effect of pillaring, 128, 487

Dodecacarbonyltetrairidium

SiO₂-supported catalysts, 1,5-cyclooctadiene isomerization, reaction yield optimization, kinetic approach, 129, 288

Doping

CeO₂ with Gd₂O₃, enhancement of NO reduction by CO over Rh/CeO₂ catalysts, **131**, 74

MgO catalysts with zinc and manganese oxides, effects on methane coupling activity, 130, 147

 \mathbf{E}

Electrocatalysis

CO₂ conversion to methane and O₂ with oxygen ionconducting electrolyte, **129**, 216

enhancement of methane oxidation on Pt catalysts, 130, 306

Electrochemical techniques

non-faradaic modification of catalytic activity $\beta''-Al_2O_3$ as solid electrolyte, 128, 415 effect on methanol oxidation on Pt catalysts, 127, 645

Electrolysis

prepared Ag catalysts for partial oxidation of methanol, poisoning by Fe, 129, 414

Electrolyte cells

solid, HCN synthesis in, kinetics, 132, 257 Electrolytes

oxygen ion-conducting, in electrocatalytic conversion of CO₂ to methane and O₂, 129, 216

Electronegativity

framework Ga in zeolites, evaluation, **129**, 19 Electron microdiffraction

in analysis of Pt-Sn-Al₂O₃ reforming catalysts, 129, 257

Electron microscopy

 $A_{2+x}Ru_{2-x}O_{7-y}$ (A = Bi,Pb) catalyst surfaces, 127, 421 high-resolution, see High-resolution electron microscopy

in situ analysis of behavior of supported Co particles, 128, 137

Pt/ZSM-5 catalysts, 127, 366

Electron paramagnetic resonance

coordination sphere of Mo⁵⁺ in UV-irradiated Mo/ SiO₂ catalysts, letter to editor, **131**, 300

Electrons

deficient Pd-H⁺ adducts in zeolite Y, formation, effects of Ca²⁺ and Mg²⁺, 128, 13

Electron spin resonance

Cr species in CrO_x/ZrO₂ catalysts, 127, 761

sulfuric acid catalyst deactivation, 132, 263 V_2O_5 catalysts supported on anatase, rutile, and

₂O₅ catalysts supported on anatase, rutile, and TiO₂(B) polymorphs for ammoxidation of toluene, 132, 128

Enthalpy

O₂ adsorption and H₂ titration of O₂ adsorbed on Pt powder and Pt/SiO₂, **129**, 31 **Epoxidation**

cyclohexene

by oxoperoxometallates under phase-transfer conditions, 127, 42

polymer-supported Mo and V catalysts for, activation, activity, and stability, 131, 115

ESR, see Electron spin resonance

Ethane

chemisorbed on Pt/SiO₂ catalysts, thermal decomposition of surface species, associated breaking of C—C bonds, IR spectroscopic study, 127, 445

hydrogenolysis on Rh/La $_2$ O $_3$ catalysts, support promoter effect, thermal evolution, 127, 719

oxidation

over alkali metal vanadate/SiO₂ catalysts, **129**, 497 selective, over V₂O₅/SiO₂ catalysts, role of adsorbate bonding, **128**, 210

oxidative dehydrogenation over Cl-promoted Li⁺-MgO catalysts, 131, 513

Ethanol, see Ethyl alcohol

Ethene, see Ethylene

Ethers

formation from alcohols over Ni/SiO₂ catalysts, role of catalyst properties, **128**, 337

Ethyl acetoacetate

and benzaldehyde, condensation over alkaline-substituted sepiolites: evaluation as strong base catalysts, 130, 130

Ethyl alcohol

and acetaldehyde, decarbonylation on Rh(111) catalyst surface, divergent pathways, 130, 528

conversion over 12-molybdophosphoric acid-doped polyacetylene catalysts, 132, 311

oxidative dehydrogenation on Cu(110) catalysts, molecular beam study, 131, 104

Ethylbenzene

ammoxidation over V-Sb-Bi oxide/Al₂O₃ catalysts, dehydrogenation mechanism, 127, 354

Ethyl cyanoacetate

and benzaldehyde, condensation over alkaline-substituted sepiolites: evaluation as strong base catalysts, 130, 130

Ethylene

deuterogenation over Pt/SiO₂ catalysts, promotion by Na, 131, 276

dimerization over titanium butoxide/triethylaluminum catalysts, kinetics, 132, 68

heat of adsorption on Ag/Al₂O₃ catalysts, direct measurement, 128, 148

hydroformylation over

Rh/SiO₂ catalysts, promoting effects of Se, 132, 566

Rh/ZrO₂ catalysts, promoting effects of Se, 127, 631

hydrogenation over

metallic Mo catalysts, analysis with isolatable high-pressure reactor: identification of reaction site and role of carbonaceous deposits, 128, 320 Pt and Pt/SiO₂ catalysts, kinetics, 127, 342

oxidation on Pt catalyst surfaces, analysis in situ with solid electrolyte cyclic voltammetry, 129, 67

Ethylenediamine

and propylene glycol, cyclization over palladized Zn-Cr-O catalysts in synthesis of 2-methylpyrazine, TPD-TPR-MS mechanistic study, 130, 403

Ethylene glycol

vapor-phase dehydration, acidic catalysts for, application to pyruvic acid synthesis, 129, 12

N-Ethyl formamide

dehydration on MoO₃-Sb₂O₄ catalysts

active sites and role of spillover oxygen, 132, 183 catalyst preparation, characterization, and synergism, 132, 157

mathematical model based on remote control mechanism, comparison with experimental results, 132, 200

2-Ethyl-hexenal

gas-phase dehydrogenation over Al₂O₃-supported Pd, Pt, Rh, and Ru catalysts, effects of oxygen, **132**, 402

Ethyl malonate

and benzaldehyde, condensation over alkaline-substituted sepiolites: evaluation as strong base catalysts, 130, 130

Europium sesquioxide

acidity/basicity, relationship to catalytic activity for oxidative coupling of methane to C₂-hydrocarbons, 130, 411

EXAFS, see Extended X-ray absorption fine structure spectroscopy

Extended X-ray absorption fine structure spectroscopy

CO-induced growth of Pd particles encaged in zeolite Y, 127, 213

Cu-Ni/ γ -Al₂O₃ bimetallic catalysts in situ, 131, 491 MoO₃ spreading on surface of γ -Al₂O₃, 130, 192

Ni/SiO₂ catalysts prepared by deposition-precipitation, characterization of adsorbed state of Ni(II) ions, 130, 21

Pt/ZSM-5 catalysts, 127, 366

F

Ferric oxide

-Cr₂O₃-Al₂O₃ aerogels, selective catalytic reduction of NO by NH₃, 130, 319

SiO₂-supported catalysts, acidity, analysis by microcalorimetric measurements of pyridine adsorption, 127, 706

Filaments

carbon, formation on Cu-Ni and Ni catalysts: catalyst interaction with hydrocarbons, 131, 60

Films

porous anodic alumina, metal deposition under hydrotreating conditions, visualization, 127, 178 surface oxide, at Ru/TiO₂ interface, formation and H₂/CO chemisorption, temperature effects, **130**, 173

Fischer-Tropsch catalysts

iron oxide pillared clay with large gallery height, properties, 130, 29

Fischer-Tropsch synthesis

deactivation of Ru/TiO₂ catalysts during, isotopic tracer study, 130, 597

intrinsic rate parameters, evaluation, **124**, 297; comment, **132**, 571; reply, **132**, 573

over Mo/C catalysts, effects of carbon surface and structural properties, 129, 330

Fluid catalytic cracking catalysts

commercial, adsorption of 2-propanamine, analysis, 129, 88

Fluorescence

spatially resolved laser-induced, in imaging of OH formed by oxidation of H₂ on Pt catalysts, 128, 92

Fluoride

promoted Mo-Ni catalysts, comparison of supports: carbon deposition and model compound reaction studies, 128, 537

Fluorine

modified AIPO₄, NMR characterization, 130, 642 Foils

Pt polycrystalline, as model Pt catalysts, NO reduction by NH₃ at atmospheric pressures, **132**, 440 Formaldehyde

condensation with benzene derivatives over USY zeolites, 130, 138

formation by methanol dehydrogenation on Namodified silicalite-1, active sites, 131, 226

Fourier transform infrared spectroscopy

δ-Al₂O₃, CoAl₂O₄, and NiAl₂O₄, surface properties, comparison, **131**, 167

amorphous AlPO₄ supports, 128, 293

CO adsorption on Cr/AlPO₄ catalysts, 128, 303

CO₂ methanation on supported Ru catalysts, 129, 130

phosphorus-promoted hydrotreating catalyst precursors, 132, 498

V₂O₅/TiO₂ catalyst surface sites, **128**, 499 FTIR, see Fourier transform infrared spectroscopy

G

Gadolinia, see Gadolinium oxide Gadolinium oxide

doping of CeO₂, enhancement of NO reduction by CO over Rh/CeO₂ catalysts, **131**, 74

Gallium

-Pt, loaded HZSM-5 zeolites, reduction by hydrogen, 130, 611

substituted in zeolite framework, electronegativity and IR spectroscopic study, 129, 19

Gallium oxide

SiO₂-supported catalysts, acidity, analysis by microcalorimetric measurements of pyridine adsorption, 127, 706

Gas

-transition metal interfaces, surface-enhanced Raman spectroscopic study: SO₂ adsorption and reactions on Pt-, Rh-, and Ru-coated Au catalysts, 130, 62

Gas chromatography

inverse, in analysis of acidic properties of pure and composite oxides at infinite dilution, 131, 433

Gasification

behavior of supported Co particles during, in situ electron microscopic analysis, 128, 137

char, catalytically promoted, adsorption of oxygen, microcalorimetric study, 132, 388

graphite by CO₂, H₂O, and O₂ over transition metal oxide catalysts, **130**, 161

Gasoline

octane number, enhancement by ZSM-5 and ultrastable Y zeolites, 129, 275

Germanium

from organometallics, alloyed with Pd in Al₂O₃-supported bimetallic catalysts, gas-phase dehydrogenation of valylene and isoprene, **129**, 47

-Ru alloys, Al₂O₃-supported, catalytic properties, 128, 275

Glass

controlled pore, support of

metal catalysts, active site densities, determination with single turnover procedure, evaluation, 127, 675

Rh catalysts in aqueous-phase

hydroformylation of linear, terminal, and internal olefins, **129**, 100 preparation, **129**, 94

porous Vycor, support of Ni catalysts, hydrogen uptake, effects of sintering and support, 129, 544 support of TiO₂ membranes, photocatalytic degradation of 3-chlorosalicylic acid, kinetic studies, 127, 167

Gold

carbon-supported catalysts, acetylene hydrochlorination

catalyst deactivation, 128, 366 catalyst reactivation, 128, 378

MnO_x-supported catalysts, low-temperature CO oxidation: comparison with Pt/SnO_x catalysts, 129, 114

Pt-, Rh-, and Ru-coated catalysts, SO₂ adsorption and reactions: surface-enhanced Raman spectroscopy at transition metal-gas interfaces, 130, 62

-Pt/SiO₂ bimetallic catalysts, neopentane reactions, 132, 451

Graphite

gasification by CO₂, H₂O, and O₂ over transition metal oxide catalysts, **130**, 161 support of

Co particles, reactivity during gasification, in situ electron microscopic analysis, 128, 137

Pt catalysts, carbon deposition on Pt particles, 123, 486; erratum, 127, 790

H

Halobenzenes

alkylation by protonated mordenite pretreated with chlorofluorocarbons, 132, 512

Heat of adsorption

butadiene, ethylene, and oxygen on Ag/Al₂O₃ catalysts, direct measurement, 128, 148

CO and H₂ on Pt/SiO₂ catalysts, effect of Pt crystallite size, 130, 9

Heptane

cracking over Y zeolites: effect of extra-framework Al species on zeolite activity, selectivity, and stability, 130, 471

oxidation over Pd/Al₂O₃, Pt/Al₂O₃, and Pt/ZrO₂, effects of catalyst structure and carbon deposition, **130**, 374

12-Heteropoly oxometalates

ion exchange-modified, catalysis of oxidative dehydrogenation of isobutyric acid to methacrylic acid, 132, 100

Hexane

aromatization by Pt clusters supported on high surface area MgO, 132, 269

cracking over

silicalite-cobalt oxides loaded and impregnated in situ, comparison, 128, 458

zeolites: relationship of catalyst properties to performance, 127, 51

reforming over Pt/zeolite catalysts, kinetic and mechanistic considerations, 129, 145

1-Hexene

hydrosilylation over Pt catalysts, intermediacy of metal colloids, 127, 67

isomerization over Pt/γ - Al_2O_3 catalysts, effects of reaction mixture density and temperature, 131, 445

Hexenes

formation from linear and branched pentenes over Ru/SiO₂ catalysts: mechanisms of C—C formation and cleavage on metal surfaces, 132, 472

High-pressure reactors

isolatable, in analysis of ethylene hydrogenation over metallic Mo catalysts: identification of reaction site and role of carbonaceous deposits, 128, 320

High-resolution electron microscopy

V₂O₅ catalysts supported on anatase, rutile, and TiO₂(B) polymorphs for ammoxidation of toluene, 132, 128

Homologation

linear and branched butenes and butanes on Ru/SiO₂ catalysts, 131, 457

propene with methane over Ni/Al₂O₃ and Ni/SiO₂ catalysts: surface characterization study, **129**, 368

HREM, see High-resolution electron microscopy Hydrazine

formation by hydrolysis of benzophenone azine, sulfonated resins as immobilized phase-transfer catalysts for, preparation, 130, 547

pretreatment of unpromoted and alkali-promoted Fe/TiO₂ catalysts, effect on NH₃ synthesis kinetics, **127**, 227

Hydrocarbons

alkylaromatic, ammoxidation over V-Sb-Bi oxide/ γ-Al₂O₃ catalysts, dehydrogenation mechanism, 127, 354

C₂, oxidative coupling of methane over rare-earth oxides, effect of catalyst acidity/basicity, 130, 411

C₄, selective oxidation over β-VOPO₄ catalysts, reactive oxygen lattice sites for, analysis, 128, 113 chlorinated, oxidation by metal-loaded acid catalysts, 130, 76

interaction with Cu-Ni and Ni catalysts in formation of carbon filaments, 131, 60

oxidation, AlNbO₄ as support for, preparation and characterization, 130, 293

synthesis over Ru catalysts, transport-enhanced α olefin readsorption pathways in, analysis, 129,
238

Hydrochlorination

acetylene over Au/C catalysts catalyst deactivation, 128, 366 catalyst reactivation, 128, 378

Hydrocracking

cumene over fluoride promoted Ni-Mo catalysts, comparison of supports, 128, 537

Hydrocracking catalysts

commercial, pyridine hydrogenation and piperidine hydrogenolysis, reaction and deactivation kinetics, 131, 545

Hydrodemetallation

over CoMo/Al₂O₃ and promoted Al₂O₃ catalysts associated metal sulfide deposits, characterization, **132**, 21

catalyst deactivation during, kinetic studies, 132,

porous catalysts for, description and deactivationassociated metal sulfide deposits, randomspheres model, 132, 41

Hydrodenitrogenation

catalysis by hydrotreating catalysts prepared via promotion of low-valent transition metal complexes, evaluation, 130, 116

cyclohexylamine, decahydroquinoline, and *O*-propylaniline over carbon-supported transition metal sulfide catalysts, **127**, 605

pyridine on MoS_x-based catalysts, dual mechanism, 131, 204

quinoline over

Al₂O₃-supported sulfided Mo, Ni, and Ni-Mo catalysts, effect of phosphate, **131**, 412

carbon-supported transition metal sulfide catalysts, 127, 619

tris(ethylenediamine) cobalt molybdate-derived catalyst for, effect of sulfiding, 131, 298

Hydrodesulfurization

catalysis by hydrotreating catalysts prepared via promotion of low-valent transition metal complexes, evaluation, 130, 116

dibenzothiophene on hydrotreating catalysts, kinetics, 128, 581

thiophene over

Co and Co-Mo sulfided catalysts supported on carbon and γ-Al₂O₃, effect of phosphorus, **128**, 559

Mo/C catalysts, effects of carbon surface and structural properties, 129, 330

NiCo-Mo/SiO₂ catalysts, promoter effects, 131, 385

Ni-Mo/C sulfided catalysts, role of Ni, 131, 326 Ni-Mo fluoride-promoted catalysts, comparison of supports, 128, 537

tris(ethylenediamine) cobalt molybdate-derived catalyst for, effect of sulfiding, 131, 298

Hydroformylation

ethene over

Rh/SiO₂ catalysts, promoting effects of Se, 132, 566

Rh/ZrO₂ catalysts, promoting effects of Se, 127, 631

linear, terminal, and internal olefins over supported aqueous-phase Rh catalysts, 129, 100

propene over SiO₂-supported Pd and Rh catalysts, mechanistic study: effect of added Na⁺, **130**, 106

Hydrogen

activation on RuS₂ unsupported catalysts, effect of progressive desulfurization, 132, 253

chemisorption by

Pt/C catalysts, effects of carbon support and mean Pt particle size, 128, 397

Pt-Sn/Al₂O₃ catalysts, analysis, 127, 287

Pt/TiO₂ catalysts and sulfided Pt/Al₂O₃ catalysts, site blocking effects, **130**, 359

and CO

adsorption on Pd/Al₂O₃ catalysts: CH₃O formation and hydrogenation rates, **132**, 145

chemisorption on surface oxide films at Ru/TiO₂ interface, temperature effects, **130**, 173

formation by partial oxidation of methane over Ni/Al₂O₃ catalysts, **132**, 117

diffusion into and chemisorption by Pt/y-Al₂O₃ pellets, ¹²⁹Xe NMR study, **128**, 447

effects on

butane conversion over ZrO₂/SO₄²⁻ solid superacid catalyst, **131**, 199

shape and structure of Pt-Ce and Rh-Ce particles supported on SiO₂, **128**, 161 evolution by water photodecomposition on semiconductors, MoS₂/SiO₂ as catalysts for, evaluation, 131, 156

gaseous

isotope-exchange reaction with palladium hydride powder, mechanistic studies, 130, 268

sorbed by chloranil-modified Mg₂Ni, protiumdeuterium exchange mechanism, 129, 300

²H, see Deuterium

heat of adsorption on Pt/SiO₂ catalysts, effect of Pt crystallite size, 130, 9

oxidation on Pt catalysts

derived OH, imaging by spatially resolved laserinduced fluorescence, 128, 92

kinetics, 132, 210

reaction with neopentane over bimetallic Pt-Sn/Al₂O₃ and Pt-Au/SiO₂ catalysts, **132**, 451

reduction of

Ga-Pt loaded HZSM-5 zeolites, 130, 611 TiO₂: generation of basic sites, 127, 221

role in mobility of phases in Ni-TiO_x systems, 131, 51

titration of

CO, for determination of very small surface areas, application to Pt/Al₂O₃ catalysts, letter to editor, **127**, 457; reply, **127**, 460

O₂ adsorbed on Pt powder and Pt/SiO₂, enthalpy changes, **129**, 31

uptake by Ni catalysts supported on porous Vycor glass, effects of sintering and support, 129, 544

Hydrogenation

benzene over Mo₂C/Al₂O₃ catalysts, **128**, 126

1,3-butadiene on Pd particles evaporated on carbonaceous supports, particle size effect, 129, 1

CO

on Co catalysts, role of catalyst surface structure and dispersion, 128, 231

on Co-Ni alloy catalysts, support effects: activity and selectivity of catalysts, 130, 202

Os in basic Y zeolite as stable selective catalyst for, design, 129, 315

on Pt/SiO₂ catalysts, effect of Pt crystallite size, 130, 9

on Pt/TiO₂ catalysts: reversal of SMSI state, 128, 186

over Rh/SiO₂ catalysts, effect of pre-adsorbed sulfur, 129, 540

over Ru/KY catalysts, effect of nitromethane addition, 128, 311

cyclopropane on Rh/La₂O₃ catalysts, support promoter effect, thermal evolution, 127, 719

dienes over MoS₂/γ-Al₂O₃ catalysts, effect of Mo loading: evidence of elementary ensemble site, **129**, 511

enantioselective, methyl pyruvate by cinchonamodified Pt/SiO₂ catalysts, variation of activity and optical yield with experimental variables, 128, 387 ethylene over

metallic Mo catalysts, analysis with isolatable high-pressure reactor: identification of reaction site and role of carbonaceous deposits, 128, 320 Pt and Pt/SiO₂ catalysts, kinetics, 127, 342

gas-phase

2-ethyl-hexenal over Al₂O₃-supported Pd, Pt, Rh, and Ru catalysts, effects of oxygen, 132, 402

valylene and isoprene over Pd/Al₂O₃ bimetallic catalysts alloyed with Ge, Pb, Sb, or Sn, **129**, 47

olefins on Pt catalysts, 129, 356

propene on CrO_x/ZrO₂ catalysts, 127, 777

pyridine on commercial hydrocracking catalysts, reaction and deactivation kinetics, 131, 545

selective

alkenes and alkynes on Pd complexes anchored in montmorillonite, 130, 41

 α,β -unsaturated aldehydes over zeolite-supported metals, geometric and electronic effects, 131, 401

toluene and xylene over Pd catalysts

kinetics and xylene isomerization, 127, 251 reaction model, 127, 267

Hydrogen cyanide

synthesis in solid electrolyte cell, kinetics, **132**, 257 Hydrogen fluoride

in preparation of Rh/γ-Al₂O₃ catalysts by co-impregnation, 128, 34

Hydrogenolysis

n-alkanes on β-W₂C and WC catalysts, effects of surface oxygen, 130, 498

n-butane over Pt/TiO₂ and sulfided Pt/Al₂O₃ catalysts, site blocking effects, **130**, 359

ethane on Rh/La₂O₃ catalysts, support promoter effect, thermal evolution, 127, 719

linear and branched butenes and butanes on Ru/SiO₂ catalysts, 131, 457

methyl acetate on Cu/SiO₂ catalysts, effect of reduction treatment of catalysts, 131, 178

methylcyclopropane on oxygen-modified Mo(111): appearance of acid site, 130, 556

methyloxirane over Pt/SiO₂ catalysts, structure sensitivity, 129, 519

piperidine on commercial hydrocracking catalysts, reaction and deactivation kinetics, 131, 545

propane, in characterization of stability of Nb₂O₅ surface oxide supports, **127**, 453

Hydrogen peroxide

decomposition over MnO₂ and Mn(OH)₂, homogeneous and heterogeneous catalysis in, observation, **131**, 88

hydroxylation of phenol over TS-1 zeolites: catalytic properties, 131, 294

and propylene, in synthesis of propylene oxide over titanium silicalite catalysts, 129, 159

Hydrolysis

benzophenone azine to hydrazine, sulfonated resins as immobilized phase-transfer catalysts for, preparation, 130, 547 Hydrometallation

in porous anodic alumina films, visualization of metal deposition, 127, 178

Hydrosilylation

Pt-catalyzed, intermediacy of metal colloids, morphologic and catalytic studies, 127, 67

Hydrotalcite

synthetic, thermally activated, catalysis of stereospecific polymerization of propylene oxide, 130, 354

Hydrothermal treatment

in dealumination of NH₄NaY zeolite, kinetic study, 130, 459

Hydrotreating catalysts

prepared via promotion by low-valent transition metal complexes, synthesis and activity, 130, 116

Hydroxylation

anisole, benzene, phenol, and toluene over TS-2 catalysts with MEL structure, 130, 440

phenol with H₂O₂ over TS-1 zeolites: catalytic properties, 131, 294

surface, during MgO synthesis by sol-gel method, effect of pH, 127, 75

Hydroxyls

formed by oxidation of H₂ on Pt catalysts, imaging by spatially resolved laser-induced fluorescence, 128, 92

in HNa-Y zeolites, fundamental bending vibrations, observation by neutron inelastic scattering, 131, 289

surface, on AlPO₄ catalysts, NMR characterization, 130, 642

I

Imaging

by spatially resolved laser-induced fluorescence, OH formed by oxidation of H₂ on Pt catalysts, 128, 92

Impregnation

and adsorption, Pd(II) compounds onto Al₂O₃, effect of calcination temperature of alumina, 132, 422

co-, see Co-impregnation

 SnO_2 and α - Sb_2O_4 with cation from other oxide, catalysts prepared by, selective oxidation of isobutene to methacrolein, phase cooperation, 132, 343

Infrared spectroscopy

C—C bond-breaking during thermal decomposition of chemisorbed species from ethane on Pt/SiO₂ catalyst, 127, 445

CO adsorbed onto RuCu/SiO₂ catalysts: characterization of catalyst, 129, 402

CO adsorption on

colloidal Pt: surface chemistry, 129, 530 reduced W/Al₂O₃ catalysts, 131, 234

diffuse reflectance, in analysis of As₂O₃ interaction with deNO₂ catalysts, 129, 168

Fourier transform, see Fourier transform infrared spectroscopy

framework Ga in zeolites: analysis of electronegativity, 129, 19

H-ZSM-5 zeolites

phosphorus-modified, acidic properties, 132, 229

surface species during toluene methylation, in situ analysis, 132, 244

low-temperature, selective adsorption of NO and CO on CuO/γ-Al₂O₃ catalysts, **132**, 85

NO adsorption on reduced W/Al₂O₃ catalysts, 131, 234

with probe molecules, in analysis of monolayer structure of V₂O₃/γ-Al₂O₃ catalysts, 127, 665

TiO₂-SiO₂ catalysts, band frequency of silanol bending vibration, correlation with acid catalytic activity, **132**, 563

Infusorial earth

support of Ni catalysts, methanation reactions, analysis *in situ* with magnetic induction method: experiments and modeling, **127**, 576

Interfaces

Ru/TiO₂, surface oxide films at, formation and H₂/CO chemisorption, temperature effects, **130**, 173

transition metal-gas, surface-enhanced Raman spectroscopic study: SO₂ adsorption and reactions on Pt-, Rh-, and Ru-coated Au catalysts, 130, 62

Ion exchange

effect on pore structure and morphology of 12heteropoly oxometalates, 130, 483

in microporous monovalent salts of 12-tungstophosphoric and 12-molybdophosphoric acid catalysts, properties, 128, 69

modified 12-heteropoly oxometalate catalysts, oxidative dehydrogenation of isobutyric acid to methacrylic acid, 132, 100

Ion scattering spectroscopy

 γ -Al₂O₃ model catalysts modified by Mo and Pt, **130**, 332

Iridium

Al₂O₃-TiO₂ composite oxide-supported catalysts, structure and activity, **127**, 201

-Pt bimetallic reforming catalysts, metal interactions and IrO₂ agglomeration, effect of chloride and water vapor, 131, 378

Iridium dioxide

agglomeration in Pt-Ir catalysts, effect of chloride and water vapor, 131, 378

Iron

 γ -Al₂O₃-supported high loading catalysts, reduction/oxidation, 128, 218

catalysis of deuterium exchange and decomposition reactions of methylhydrazine and 1,1-dimethylhydrazine, 129, 25

effect on V₂O₅/SiO₂ catalysts active for selective reduction of NO, **128**, 574

poisoning of electrolytic Ag catalysts for partial oxidation of methanol, 129, 414

TiO₂-supported catalysts, NH₃ synthesis, kinetics, effects of hydrazine pretreatment and alkali promotion of catalysts, 127, 227

Iron oxide

ferric, see ferric oxide

pillared clay with large gallery height, synthesis and properties as Fischer-Tropsch catalyst, 130, 29

Isobutane

cracking on HZSM-5 zeolites, analysis, **130**, 423 Isobutene, *see* Isobutylene

Isobutylene

selective oxidation to methacrolein over SnO_2 and α - Sb_2O_4 , phase cooperation: analysis of

coprecipitated catalysts, 132, 360

impregnated catalysts, 132, 343

mechanically mixed catalysts, 132, 319

Isobutyric acid

oxidative dehydrogenation to methacrylic acid on ion exchange-modified 12-heteropoly oxometa-lates, 132, 100

Isomerization

n-alkanes on β-W₂C and WC catalysts, effects of surface oxygen, 130, 498

aromatic, with ZSM-5 zeolite, analysis: ring expansion-contraction mechanism, 127, 96

1,5-cyclooctadiene on Ir₄(CO)₁₂/SiO₂ catalysts, reaction yield optimization, kinetic approach, 129, 288

1-hexene over Pt/γ-Al₂O₃ catalysts, effects of reaction mixture density and temperature, 131, 445 methyloxirane over Pt/SiO₂ catalysts, structure sensitivity, 129, 519

skeletal

3,3-dimethyl-1-butene on oxided and sulfided CoMo/Al₂O₃ catalysts, role of support, 130, 212

hydrocarbons over ZrO₂ catalysts promoted by Pt and SO₂⁻, 130, 257

xylene

during hydrogenation over Pd catalysts, 127, 251

on large-pore zeolites, evidence for bimolecular pathway, 129, 177

Isoprene

gas-phase hydrogenation over Pd/Al₂O₃ bimetallic catalysts alloyed with Ge, Pb, Sb, or Sn, 129, 47

hydrogenation on Pt catalysts, 129, 356

Isopropanol, see Isopropyl alcohol

Isopropyl alcohol

adsorption on SAPO-5 materials: analysis of acid sites, 131, 252

decomposition

in determination of surface acidity and basicity of metal oxide catalysts, 131, 190

on *in situ* loaded and impregnated silicalite-cobalt oxides, comparison, **128**, 458

dehydration

catalysis with AlNbO₄ as support, evaluation, 130, 293

over TiO₂-SiO₂ catalysts, catalyst activity, correlation with IR band frequency of silanol bending vibration, 132, 563

oxidative dehydrogenation on Cu(110) catalysts, molecular beam study, 131, 104

Isopropylamine

adsorption on

fluid catalytic cracking catalysts, 129, 88

SAPO-5 materials: analysis of acid sites, 131, 252 Isopropylation

benzene over large-pore zeolites, activity and deactivation studies, 132, 79

Isotope-exchange reaction

between gaseous H₂ and palladium hydride powder, mechanistic studies, **130**, 268

Isotope studies

Ru/TiO₂ deactivation during Fischer-Tropsch synthesis, 130, 597

K

Kaolin

acid-leached calcined, preparation and properties, 129, 225

Ketenes

formation by reaction of carboxylic acids over alkali metal-exchanged zeolites, 129, 438

Ketones

liquid-phase oxidation over expanded lattice Ru pyrochlore oxide catalysts with molecular oxygen, 127, 393

Kieselguhr, see Infusorial earth

Kinetics

ammonia synthesis over Fe/TiO₂ catalysts, effects of hydrazine pretreatment and alkali promotion of catalysts, **127**, 227

tert-butanol dehydration on zeolite NaH–ZSM-5, 127, 377

catalytic reactions under varying intensities of surface diffusion, Monte Carlo and ideal adsorbed layer models, comparison, 132, 302

CO oxidation on Pt catalysts

linkage of ultrahigh vacuum and atmospheric pressure behavior, 127, 553

model development and multiplicity analysis, 127, 524

oscillatory reaction, pressure effects, 127, 512

1,5-cyclooctadiene isomerization on Ir₄(CO)₁₂/SiO₂ catalysts, measurement of constants: application to reaction yield optimization, 129, 288

dealumination of NH₄NaY zeolite by hydrothermal treatment, **130**, 459

dibenzothiophene hydrodesulfurization on hydrotreating catalysts, 128, 581

ethylene dimerization over titanium butoxide/ triethylaluminum catalysts, 132, 68

ethylene hydrogenation over Pt and Pt/SiO₂ catalysts, 127, 342

HCN synthesis in solid electrolyte cell, 132, 257 *n*-hexane reforming over Pt/zeolite catalysts, 129, 145

hydrodemetallation over CoMo/Al₂O₃ and promoted Al₂O₃ catalysts and associated catalyst deactivation, analysis with model compounds, **132**, 1 hydrogen-oxygen reaction on Pt catalysts, **132**, 210 oxidation/reduction of supported Cu catalysts pre-

pared from copper(II) acetylacetonate, 130, 447 photocatalytic reactions

degradation of 3-chlorosalicylic acid over TiO₂ membranes supported on glass, **127**, 167 oxidation, role of reactor dynamics, **131**, 285

propane oxidation over Pt/γ-Al₂O₃ catalysts, effects of Pt concentration and particle size, **131**, 243 propene oxidation over Sb oxide dispersed on TiO₂,

reaction and deactivation, pyridine hydrogenation and piperidine hydrogenolysis on commercial hydrocracking catalysts, 131, 545

solid-state tritiation of thymine on Pt black catalysts, 130, 569

toluene and xylene hydrogenation over Pd catalysts, 127, 251

transient, steady-state vs. non-steady-state, in analysis of surface coverages during oxidative coupling of methane on Sm₂O₃ catalysts, 132, 556

xylene isomerization on large-pore zeolites, evidence for bimolecular pathway, 129, 177

L

Langmuir-Hinshelwood reactions

collective behavior, 129, 524

127, 698

under varying intensities of surface diffusion, Monte Carlo and ideal adsorbed layer models, comparison, 132, 302

Lanthana, see Lanthanum trioxide

Lanthanum

-Cu oxide, ZrO₂-supported catalysts, activity for reaction of NO and CO, 132, 560

La_{2-x}Sr_xCuO_{4-δ} superconducting systems, catalytic
 CO oxidation between 373 and 523 K, 131, 582
 modified Al₂O₃, support of Pd catalysts, methanol decomposition, TPD and XPS analyses, 128, 198

Lanthanum trioxide

acidity/basicity, relationship to catalytic activity for oxidative coupling of methane to C₂-hydrocarbons, 130, 411

-CaO catalysts, oxidative coupling of methane, effect of bulk and surface properties, 128, 512

coated SiO₂, support of Pt catalysts, analysis, 129, 447

support of Rh catalysts, thermal evolution of support promoter effect, 127, 719

Lasers

induced spatially resolved fluorescence, in imaging of OH formed by oxidation of H₂ on Pt catalysts, **128**, 92

Leaching

oxidative, Cu atoms from PdCu particles in zeolite Y, 131, 502

Lead

Ni bimetallic catalysts supported on Al₂O₃, conversion of cyclohexane, 129, 58

from organometallics, alloyed with Pd in Al₂O₃-supported bimetallic catalysts, gas-phase dehydrogenation of valylene and isoprene, **129**, 47

 $Pb_{2+x}Ru_{2-x}O_{7-y}$

catalysis of liquid-phase oxidation of vicinal diols, primary alcohols, and related substrates with molecular oxygen, 127, 393

surface analysis by electron microscopy, XPS, and temperature-programmed reduction and oxidation, 127, 421

-Ru alloys, Al₂O₃-supported, catalytic properties, 128, 275

Liquid phase catalysts

supported, for sulfuric acid formation, deactivation, ESR studies, 132, 263

Lithium

-MgO catalysts, Cl-promoted, oxidative dehydrogenation of ethane, 131, 513

MgO-supported catalysts, oxidative coupling of methane, associated surface phenomena, 131, 143

modified Al_2O_3 , support of Pd catalysts, methanol decomposition, TPD and XPS analyses, 128, 198

modified AlPO₄, NMR characterization, 130, 642 substituted sepiolites, evaluation as strong base catalysts, 130, 130

Lithium carbonate

doped MgO catalysts, oxidative coupling of methane, effects of supporting loadings of zinc and manganese oxides, 130, 147

Lithium nickelate

methane coupling catalysts, oxygen surface species, characterization and interaction with carbon oxides, 132, 92

Lithium vanadate

SiO₂-supported catalysts, ethane oxidation, **129**, 497

M

Magnesia, see Magnesium oxide Magnesium

Mg²⁺, effect on formation of electron-deficient Pd-H⁺ adducts in zeolite Y, **128**, 13

- Mg₂Ni, chloranil-modified, sorbed H₂, protium-deuterium exchange in, mechanism, **129**, 300
- -V-O catalysts, oxidative dehydrogenation of cyclohexane, 128, 287

Magnesium orthovanadate

catalysis of oxidative dehydrogenation of cyclohexane, 128, 287

Magnesium oxide

catalysts, doping with zinc and manganese oxides, effects on methane coupling activity, 130, 147

-Li⁺ catalysts, Cl-promoted, oxidative dehydrogenation of ethane, **131**, 513

-SiO₂ catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, 129, 12

SiO₂-supported catalysts, acidity, analysis by microcalorimetric measurements of pyridine adsorption, 127, 706

support of

Li catalysts, oxidative coupling of methane, associated surface phenomena, 131, 143

Ni catalysts, structure and morphology, effects of calcination and reduction temperature, **132**, 58

Pd catalysts, hydrogenation of toluene and xylene kinetics and xylene isomerization, 127, 251 reaction model, 127, 267

Pt catalysts, n-hexane aromatization on catalyst clusters with high surface area support, 132, 269 synthesis by sol-gel method: effect of pH on surface

hydroxylation, **127**, 75 Magnetic induction

in *in situ* analysis of methanation reactions on Ni/ kieselguhr catalysts: experiments and modeling, 127, 576

Maleic anhydride

formation by

oxidation of *n*-butane over V-P-O catalysts, location and function of Zn as promoter, **130**, 347

partial oxidation of *n*-butane, phosphorus-vanadium mixed oxide catalysts for, synthesis and characterization, **128**, 248

Manganese

mixed oxides with Cu and Co, surface enrichment, effect on CO oxidation, 130, 52

 -Ni catalysts, Na-promoted, aldehyde synthesis from synthesis gas, 128, 569

 -Sb-V-O catalysts, 2-methylpyrazine ammoxidation, TPD-TPR-MS mechanistic study, 130, 392

Manganese dioxide

homogeneous and heterogeneous catalysis of hydrogen peroxide decomposition, observation, 131, 88

Manganese(II) hydroxide

homogeneous and heterogeneous catalysis of hydrogen peroxide decomposition, observation, 131, 88

Manganese oxides

doping of MgO catalysts, effect on methane coupling activity, 130, 147

support of Au catalysts, low-temperature CO oxidation: comparison with Pt/SnO_x catalysts, 129, 114

Mass spectrometry

-TPD-TPR, in mechanistic analysis of

2-methylpyrazine ammoxidation over Sb-V-Mn-O catalysts, **130**, 392

2-methylpyrazine synthesis over palladized Zn-Cr-O catalysts, 130, 403

Metal catalysts

supported, particle size distribution, dynamic equations for, solution, 130, 588

Metal ions

adsorption, relationship to catalytic properties of Ni/C catalysts, 127, 22

Metal oxides

catalysis of oxidative coupling of methylbenzenes, 131, 215

SrCO₃-supported catalysts, oxidative coupling of methane, 127, 1

surface acidity and basicity, determination by catalytic decomposition of isopropanol, 131, 190

Metals

deposition in porous anodic alumina films under hydrotreating conditions, visualization, 127, 178

surfaces, C—C formation and cleavage on, mechanisms: formation of butenes and hexenes from linear and branched pentenes over Ru/SiO₂ catalysts, **132**, 472

Metal sulfides

accumulation during hydrodemetallation over CoMo/Al₂O₃ and promoted Al₂O₃ catalysts, effects on catalyst activity, **132**, 1

deposited during hydrodemetallation of model compounds, characterization in CoMo/Al₂O₃ and promoted Al₂O₃ catalysts, 132, 21

deposited on porous catalysts during hydrodemetallation, random-spheres model, 132, 41

Metathesis

propene over WO₃/SiO₂ catalysts: mechanism of catalyst induction, 127, 86

Methacrolein

formation by selective oxidation of isobutene over SnO_2 and α - Sb_2O_4 catalysts, phase cooperation: analysis of

coprecipitated catalysts, 132, 360

impregnated catalysts, 132, 343

mechanically mixed catalysts, 132, 319

Methacrylic acid

formation by oxidative dehydrogenation of isobutyric acid on ion exchange-modified 12-heteropoly oxometalates, 132, 100

Methanation

CO or CO₂ over Ni/kieselguhr catalysts, analysis in situ with magnetic induction method: experiments and modeling, 127, 576 CO₂ on supported Ru catalysts, FTIR study, 129, 130

Methane

homologation of propene over Ni/Al₂O₃ and Ni/SiO₂ catalysts: surface characterization study, **129**, 368

interaction with surfaces of alkali/alkaline earth oxide catalysts, 129, 106

and O₂, formation by electrocatalytic conversion of CO₂ with oxygen ion-conducting electrolyte, 129, 216

oxidation over

Al₂O₃-supported noble metal catalysts, effects of Ce additives, **132**, 287

Pt catalysts: electrochemical enhancement, 130, 306

oxidative coupling

over CaO catalysts doped with Na: identification of active phase, 128, 264

to C₂-hydrocarbons over rare-earth oxides, effect of catalyst acidity/basicity, **130**, 411

over La₂O₃-CaO catalysts, effect of bulk and surface properties, 128, 512

over Li/MgO catalysts, associated surface phenomena, 131, 143

LiNiO₂ catalysts for, oxygen surface species, characterization and interaction with carbon oxides, 132, 92

over MgO catalysts, effects of doping with zinc and manganese oxides, 130, 147

on Sm₂O₃ catalysts, surface coverages during, steady-state vs. non-steady-state transient kinetic analysis, **132**, 556

over SrCO₃-supported metal oxide catalysts, 127,

partial oxidation to CO and H₂ over Ni/Al₂O₃ catalysts, 132, 117

Methanol

decomposition over Pd catalysts supported on modified Al₂O₃, TPD and XPS analyses, 128, 198

dehydrogenation to formaldehyde on Na-modified silicalite-1, active sites, 131, 226

effect on higher alcohol synthesis over Cu/ZnO/ Cr₂O₃ catalysts, **130**, 616

oxidation on Pt catalysts, effect of non-Faradaic electrochemical modification of catalytic activity, 127, 645

partial oxidation, electrolytic Ag catalysts for, poisoning by Fe, 129, 414

synthesis, Cu-based catalysts for, analysis: in situ cell for combined X-ray diffraction and on-line catalysis tests, 132, 524

Methoxide

formation and hydrogenation rates on Pd/Al₂O₃ catalysts, effects of H₂ pressure and adsorption temperature, **132**, 145

Methoxy species

formation and decomposition on Ni/Al₂O₃ catalysts, 127, 732

Methyl acetate

hydrogenolysis on Cu/SiO₂ catalysts, effect of reduction treatment of catalysts, **131**, 178

Methylamine

synthesis over modified mordenite catalysts, selectivity, 131, 482

Methylation

toluene over H-ZSM-5 zeolites, surface species during, in situ IR spectroscopic study, 132, 244

Methylbenzenes

oxidative coupling by metal oxide catalysts, 131, 215

2-Methyl-1,3-butadiene, see Isoprene

2-Methyl-1-buten-3-yne

gas-phase hydrogenation over Pd/Al₂O₃ bimetallic catalysts alloyed with Ge, Pb, Sb, or Sn, 129, 47

Methylchlorosilanes

direct synthesis catalyzed by Cu, role of metallic promoters, 128, 468

3-Methylcrotonaldehyde, see Senecialdehyde Methylcyclohexane

reaction on WC and β-W₂C catalysts, pathways, effects of surface oxygen, 130, 86

Methylcyclopentane

conversion over zeolite-encaged Pd clusters and Pd-proton adducts, 129, 121

surface reactions on Pd/NaY and Pd/HY catalysts, temperature-programmed studies, 132, 266

Methylcyclopropane

hydrogenolysis on oxygen-modified Mo(111): appearance of acid site, 130, 556

Methylene chloride

oxidation by metal-loaded acid catalysts, **130**, 76 Methylene groups

adsorption on Rh(111) and Ni(111) surfaces, molecular orbital studies, 127, 141

Methyl groups

adsorption on Rh(111) and Ni(111) surfaces, molecular orbital studies, 127, 141

Methylhydrazine

deuterium exchange and decomposition on transition metal catalysts, 129, 25

Methyloxirane, see Propylene oxide

3-Methylpentane

cracking over zeolites: relationship of catalyst properties to performance, 127, 51

2-Methylpyrazine

ammoxidation over Sb-V-Mn-O catalysts, TPD-TPR-MS mechanistic study, 130, 392

synthesis over palladized Zn-Cr-O catalysts, TPD-TPR-MS mechanistic study, 130, 403

Methyl pyruvate

enantioselective hydrogenation by cinchona-modified Pt/SiO₂ catalysts, variation of activity and optical yield with experimental variables, **128**, 387

Methyne groups

adsorption on Rh(111) and Ni(111) surfaces, molecular orbital studies, 127, 141

Microcalorimetry

basic molecule adsorption on SiO₂ and SiO₂-Al₂O₃, 128, 23

oxygen adsorption on catalytically promoted gasification chars, 132, 388

pyridine adsorption onto SiO₂-supported oxide catalysts: analysis of catalyst acidity, **127**, 706

Microchemisorption

apparatus for, description, 127, 788

Microstructure

Pt-Ce and Rh-Ce particles on SiO2, 128, 161

Pt-Sn and Rh-Sn particles on SiO₂, 129, 473

Mineralization

photocatalyzed, cresols in aqueous media, mediation by irradiated TiO₂, 128, 352

Mixing

mechanical, SnO₂ and α-Sb₂O₄ catalysts prepared by, selective oxidation of isobutene to methacrolein, phase cooperation, **132**, 319

Models

kinetics and multiple rate states of CO oxidation on Pt catalysts, 127, 524

mathematical, based on remote control mechanism, for N-ethyl formamide dehydration over MoO₃-Sb₂O₄ catalysts, comparison with experimental results, **132**, 200

Monte Carlo and ideal adsorbed layer, for mechanism of catalytic reactions under varying intensities of surface diffusion, comparison, 132, 302

random-spheres, porous catalysts and catalyst deactivation-associated metal sulfide deposits, 132,

Molecular beam studies

oxidative dehydrogenation of alcohols on Cu(110) catalysts, 131, 104

Molecular orbitals

based analysis of adsorption of CH₃, CH₂, and CH on Ni(111) and Rh(111) surfaces, 127, 141

Molybdenum

Al₂O₃-supported sulfided catalysts, hydrodenitrogenation activity and selectivity, effect of phosphate, 131, 412

carbon-supported catalysts, hydrodesulfurization and Fischer-Tropsch activities, effects of carbon surface and structural properties, 129, 330

-Co/Al₂O₃ catalysts

deactivation during hydrodemetallation

associated metal sulfide deposits, characterization, **132**, 21

model compound kinetic studies, 132, 1

oxided and sulfided, skeletal isomerization of 3,3dimethyl-1-butene, role of support, 130, 212

-Co/y-Al₂O₃ catalysts

sulfided, structure and hydrodesulfurization activity, effect of phosphorus, 128, 559

tetrahydrothiophene desulfurization, temporal analysis of products, 127, 190

-Co/C sulfided catalysts, structure and hydrodesul-

- furization activity, effect of phosphorus, 128, 559
- -Co-Ni/SiO₂ hydrodesulfurization catalysts, structure and activity, 131, 385
- -K-Co-Rh, Al₂O₃-supported catalysts for synthesis of higher alcohols, adsorption of CO, 132, 375
- loading of MoS₂/γ-Al₂O₃ catalysts, effect on diene hydrogenation: evidence of elementary ensemble site, 129, 511
- modified γ-Al₂O₃ model catalysts, electron spectroscopic study, **130**, 332
- -Ni catalysts, fluoride-promoted, comparison of supports: carbon deposition and model compound reaction studies, 128, 537
- -Ni/Al₂O₃ catalysts
 - phosphorus-promoted hydrotreating precursors, FT-IR and solid-state NMR studies, **132**, 498 sulfided, hydrodenitrogenation activity and selectivity, effect of phosphate, **131**, 412
- -Ni/C sulfided catalysts, thiophene hydrodesulfurization, role of Ni, 131, 326
- polymer-supported catalysts for cyclohexene epoxidation, activation, activity, and stability, 131, 115
- single crystal catalysts, ethylene hydrogenation, analysis with high-pressure reactor: identification of reaction site and role of carbonaceous deposits, 128, 320
- SiO₂-supported catalysts irradiated by UV, coordination sphere of Mo⁵⁺ in, EPR study, letter to editor, **131**, 300
- zero-valent, determination after moderate temperature reduction of Al₂O₃-supported catalysts, 130, 653

Molybdenum carbide

Al₂O₃-supported catalysts, preparation and benzene hydrogenation activity, **128**, 126

Molybdenum disulfide

- γ-Al₂O₃-supported catalysts, Mo loading, effect on diene hydrogenation: evidence of elementary ensemble site, 129, 511
- exfoliated, stabilization and activation of Pt oxidation catalysts, 131, 127
- SiO₂-supported catalysts, as hydrogen evolution catalysts for water photodecomposition on semiconductors, evaluation, 131, 156

Molybdenum sulfides

based catalysts, pyridine hydrodenitrogenation, dual mechanism, 131, 204

Molybdenum trioxide

- catalysis of oxidative coupling of methylbenzenes, 131, 215
- -NiO sulfided catalysts, dibenzothiophene hydrodesulfurization kinetics, 128, 581
- -Sb₂O₄ catalysts, N-ethyl formamide dehydration active sites and role of spillover oxygen, 132, 183 catalyst preparation, characterization, and synergism, 132, 157
 - mathematical model based on remote control

- mechanism, comparison with experimental results, 132, 200
- spreading on surface of γ -Al₂O₃, EXAFS study, **130**, 192
- TiO₂-supported catalysts, interaction with As₂O₃, X-ray absorption and diffuse reflectance IR spectroscopic studies, 129, 168
- 12-Molybdophosphoric acid, see 12-Phosphomolybdic acid

Monolayers

TiO₂, coatings on SiO₂ surfaces, comparison, 131, 260

Monte Carlo simulations

- catalytic reactions under varying intensities of surface diffusion, comparison with ideal adsorbed layer model, 132, 302
- NO-CO reaction on square and hexagonal surfaces, 131, 369
- transport in porous structures: effective diffusivities in catalyst pellets, 129, 457

Montmorillonite

- anchored Pd complexes, synthesis and selective hydrogenation activity, 130, 41
- iron oxide pillared, with large gallery height, synthesis and properties as Fischer-Tropsch catalyst, 130, 29
- pillaring, effect on conversion of trimethylbenzenes, 128, 487

Mordenite

- modified, methylamine synthesis, selectivity, 131, 482
- protonated, pretreated with chlorofluorocarbons, catalysis of alkylation of benzene, alkylbenzenes, and halobenzenes, 132, 512

Morphology

- ion-exchanged 12-heteropoly oxometalates, characterization, 130, 483
- Ni/MgO catalysts, effects of calcination and reduction temperature, 132, 58
- Pt/TiO₂ catalysts and sulfided Pt/Al₂O₃ catalysts, analysis, **130**, 359

Mössbauer spectroscopy

analysis of alloy formation in supported Pt-Sn catalysts, 128, 1

N

Neodymium orthovanadate

catalysis of oxidative dehydrogenation of cyclohexane, 128, 287

Neohexene

hydrosilylation over Pt catalysts, intermediacy of metal colloids, 127, 67

Neopentane

- reaction with hydrogen over bimetallic Pt-Sn/Al₂O₃ and Pt-Au/SiO₂ catalysts, **132**, 451
- reaction on WC and β-W₂C catalysts, pathways, effects of surface oxygen, 130, 86

Neutron inelastic scattering

in observation of fundamental bending vibrations of hydroxyl groups in HNa-Y zeolites, 131, 289

Nickel

Al₂O₃-supported catalysts

bimetallic, containing Cu, Pb, or Sb, conversion of cyclohexane. 129, 58

formation and decomposition of methoxy species, 127, 732

homologation of propene with methane: surface characterization study, 129, 368

partial oxidation of methane to CO and H_2 , 132, 117

sulfided, hydrodenitrogenation activity and selectivity, effect of phosphate, 131, 412

carbon-supported catalysts, properties, relationship to metal ion adsorption, 127, 22

catalysis of deuterium exchange and decomposition reactions of methylhydrazine and 1,1-dimethylhydrazine, 129, 25

 -Co alloy catalysts, activity and selectivity for CO hydrogenation, support effects, 130, 202

-Co-Mo/SiO₂ hydrodesulfurization catalysts, structure and activity, **131**, 385

-Cu catalysts, interaction with hydrocarbons in formation of carbon filaments, 131, 60

-Cu/γ-Al₂O₃ bimetallic catalysts, EXAFS study *in situ*, **131**, 491

interaction with hydrocarbons in formation of carbon filaments, 131, 60

kieselguhr-supported catalysts, methanation reactions, analysis in situ with magnetic induction method: experiments and modeling, 127, 576

Mg₂Ni, chloranil-modified, sorbed H₂, protium-deuterium exchange in, mechanism, 129, 300

MgO-supported catalysts, structure and morphology, effects of calcination and reduction temperature, 132, 58

-Mn catalysts, Na-promoted, aldehyde synthesis from synthesis gas, 128, 569

-Mo catalysts, fluoride-promoted, comparison of supports: carbon deposition and model compound reaction studies, 128, 537

-Mo/Al₂O₃ catalysts

phosphorus-promoted hydrotreating precursors, FT-IR and solid-state NMR studies, 132, 498 sulfided, hydrodenitrogenation activity and selectivity, effect of phosphate, 131, 412

-Mo/C catalysts, thiophene hydrodesulfurization, role of Ni, 131, 326

Ni(111), adsorption of CH₃, CH₂, and CH, molecular orbital studies, 127, 141

PdNi_x, formation in cages of NaY, mechanisms, 131, 573

porous Vycor glass-supported catalysts, hydrogen uptake, effects of sintering and support, 129, 544

SiO₂-supported catalysts

homologation of propene with methane: surface characterization study, 129, 368

prepared by deposition-precipitation, adsorbed state of Ni(II) ions, EXAFS characterization, 130, 21

properties: relationship to ether formation from alcohols, 128, 337

-TiO_x systems, phase mobility, role of hydrogen, 131, 51

Nickel aluminate

and CoAl₂O₄ and δ-Al₂O₃, comparative surface properties, FTIR study, **131**, 167

Nickel etioporphyrin

hydrodemetallation over CoMo/Al₂O₃ and promoted Al₂O₃ catalysts, catalyst deactivation during, kinetic studies, **132**, 1

Nickel oxide

 -MoO₃ sulfided catalysts, dibenzothiophene hydrodesulfurization kinetics, 128, 581

-TiO₂ catalysts, acid-modified, catalytic activity, effect of acid strength, 127, 449

Niobia, see Niobium pentoxide

Niobium pentoxide

acid-base properties, characterization via selective ring opening of 2-methyloxirane, 129, 303

-SiO₂ surface phase and mixed oxides, acidic properties, 129, 38

support of V_2O_5 catalysts, surface oxide-support interactions at surface redox sites, 129, 307

surface oxide supports, stability, characterization: propane hydrogenolysis as chemical probe, 127, 453

and V₂O₅, promoted Rh/SiO₂ catalysts, comparison: behaviors during calcination and reduction treatments, **127**, 276

Nitric oxide

and CO, adsorption on

CuO/γ-Al₂O₃ catalysts, low-temperature IR spectroscopy, **132**, 85

Rh/ZrO₂ catalysts, analysis, 132, 275

W/Al₂O₃ reduced catalysts, IR study, 131, 234

decomposition over Cu-zeolites, 129, 202

interaction with highly dispersed Pt and Rh catalysts, effect of CeO₂, 130, 181

and N₂O, selective chemisorption on supported CuO catalysts prepared from copper(II) acetylacetonate, **130**, 447

reduction by

CO over

La₂CuO₄/ZrO₂ catalysts, catalyst activity, **132**, 560

Rh/CeO₂ catalysts, enhancement by Gd₂O₃ doping of support, **131**, 74

square and hexagonal surfaces, Monte Carlo simulation, 131, 369

supported Rh catalysts, effects of metal particle size and support, 128, 526

H₂ over Rh/γ-Al₂O₃ catalysts prepared by co-impregnation, 128, 48 608 NH₃ over clean and vanadium oxide-coated Pt foil catalysts, 129, 186 Pt polycrystalline foils at atmospheric pressures as model Pt catalysts, 132, 440 selective reduction by NH3 over Fe₂O₃-Cr₂O₃-Al₂O₃ aerogels, 130, 319 V₂O₅/SiO₂ catalysts, effects of promoters, 128, 574 Nitrogen monoxide, see Nitric oxide Nitromethane effect on CO hydrogenation over Ru/KY catalysts, Nitrous oxide and NO, selective chemisorption on supported CuO catalysts prepared from copper(II) acetylacetonate, 130, 447 Nuclear magnetic resonance 27A1 magic-angle-spinning acid sites in zeolite H-ZSM-5, 127, 34 AlPO₄, synthetic and modified, 130, 642 H-ZSM-5 zeolites modified with phosphorus, **132**, 229 zeolite beta, analysis of thermal stability, 132, 432 solid-state, phosphorus-promoted hydrotreating catalyst precursors, 132, 498 CO adsorption on colloidal Pt: surface chemistry, **129**, 530 magic-angle-spinning, acid sites in zeolite H-ZSM-5, 127, 34 ¹H, magic-angle-spinning acid sites in zeolite H-ZSM-5, 127, 34 AlPO₄, synthetic and modified, 130, 642 31**p** magic-angle-spinning AlPO₄, synthetic and modified, 130, 642 **132**, 229 solid-state, phosphorus-promoted hydrotreating catalyst precursors, 132, 498

H-ZSM-5 zeolites modified with phosphorus,

²⁹Si, magic-angle-spinning, acid sites in zeolite H-ZSM-5, 127, 34

¹²⁹Xe

coked H-Y zeolite, 128, 436

H₂ and O₂ diffusion into and chemisorption by Pt/ γ-Al₂O₃ pellets, 128, 447

magic-angle-spinning, analysis of thermal stability of zeolite beta, 132, 432

ZSM-5 zeolites: evidence for coke formation, 128,

0

Octane number

gasoline, enhancement by ZSM-5 and ultrastable Y zeolites, 129, 275

Olefins

linear, terminal, and internal, hydroformylation over supported aqueous-phase Rh catalysts, **129**, 100

α-Olefins

polymerization with Ziegler-Natta catalysts, trigger mechanism: two-monomer transition state and monomer activation of catalytic centers, 129, 383

readsorption, transport-enhanced pathways in Rucatalyzed hydrocarbon synthesis, 129, 238

Oligomerization

and simultaneous polymerization, acetylene on fluoridated and nonfluoridated Al₂O₃ catalysts, 131,

Optical yield

in methyl pyruvate hydrogenation by cinchonamodified Pt/SiO₂ catalysts, variation with experimental variables, 128, 387

Osmium

in basic Y zeolite, as stable selective catalyst for CO hydrogenation, design, 129, 315

Oxidation

acetaldehyde over heteropoly compounds, selectivity-controlling factors, 131, 133

n-butane to maleic anhydride over V-P-O catalysts, location and function of Zn as promoter, 130, 347

chlorinated hydrocarbons by metal-loaded acid catalysts, 130, 76

CO over

Cu/Al₂O₃ catalysts

associated structural changes in catalyst, 129,

kinetics with prereduced catalysts, 131, 22

CuCl₂ unreduced catalysts dispersed on δ-Al₂O₃ and carbon, 127, 465

 $La_{2-x}Sr_xCuO_{4-\delta}$ superconducting systems between 373 and 523 K, 131, 582

mixed oxides of Cu, Co, and Mn, effect of surface enrichment, 130, 52

Pd/δ-Al₂O₃ reduced catalysts, 131, 1

PdCl₂ unreduced catalysts dispersed on δ-Al₂O₃ and carbon, 127, 465

PdCl₂-CuCl₂ unreduced catalysts dispersed on δ-Al₂O₃ and carbon, 127, 489

Pd-Cu/δ-Al₂O₃ catalysts, 131, 36

Pt catalysts, kinetics and multiple rate states linkage of ultrahigh vacuum and atmospheric pressure behavior, 127, 553

model development and multiplicity analysis, 127, 524

Pt/Al₂O₃ catalysts, dynamic studies, 127, 307 Pt/SnO_x catalysts, mechanism, 130, 314

Rh(111) deactivated catalysts, presence of carbonate surface species during, evidence, 128,

supported Rh catalysts, effects of metal particle size and support, 128, 526

- cyclohexene by O_2 over polyoxoanion-supported atomically dispersed transition metal catalysts, 128, 84
- ethane over alkali metal vanadate/SiO₂ catalysts, 129, 497
- ethylene on Pt catalyst surfaces, analysis in situ with solid electrolyte cyclic voltammetry, 129, 67
- Fe/γ-Al₂O₃ high loading catalysts, analysis, **128**, 218 H₂ on Pt catalysts, derived OH, imaging by spatially resolved laser-induced fluorescence, **128**, 92
- heptane over Pt/Al₂O₃, Pt/ZrO₂, and Pd/Al₂O₃ catalysts, effects of catalyst structure and carbon deposition, **130**, 374
- hydrocarbons, AlNbO₄ as support for, preparation and characterization, 130, 293
- liquid-phase, vicinal diols, primary alcohols, and related substrates with molecular oxygen over expanded lattice Ru pyrochlore oxide catalysts, 127, 393
- low-temperature, CO over Pt/SnO_x and AuMnO_x catalysts, comparison, 129, 114

methane on

- noble metal catalysts supported on Al₂O₃, effects of Ce additives, 132, 287
- Pt catalysts: electrochemical enhancement, 130, 306
- methanol on Pt catalysts, effect of non-Faradaic electrochemical modification of catalytic activity, 127, 645
- oscillatory, CO over Pt catalysts at 10-760 torr, 127, 512

partial

- n-butane to maleic anhydride, phosphorus-vanadium mixed oxide catalysts for, synthesis and characterization, 128, 248
- methane to CO and H₂ over Ni/Al₂O₃ catalysts, 132, 117
- methanol, electrolytic Ag catalysts for, poisoning by Fe, 129, 414
- propylene over bismuth molybdate catalysts: stability of catalysts under reaction conditions, 132, 536
- and total oxidation, pathway selection, role of adsorbate bonding, 128, 210
- photocatalytic, kinetics, role of reactor dynamics, 131, 285
- propane over Pt/γ - Al_2O_3 catalysts, kinetics, effects of Pt concentration and particle size, 131, 243
- propene over Sb oxide dispersed on TiO₂, structural and kinetic studies, 127, 698
- Pt catalysts for, stabilization and activation by exfoliated MoS₂, **131**, 127
- -reduction, supported CuO catalysts prepared from copper(II) acetylacetonate, kinetics, 130, 447 selective
 - C₄ hydrocarbons over β-VOPO₄ catalysts, reactive oxygen lattice sites for, analysis, 128, 113 isobutene to methacrolein over SnO₂ and α-Sb₂O₄ catalysts, phase cooperation: analysis of

- coprecipitated catalysts, 132, 360 impregnated catalysts, 132, 343
- mechanically mixed catalysts, 132, 319
- toluene to benzaldehyde over V-Ag catalysts, analysis, 129, 426
- SO₂ on Pt-, Rh-, and Ru-coated Au catalysts: surface-enhanced Raman spectroscopy at transition metal-gas interfaces, 130, 62
- temperature-programmed, in analysis of surfaces of $A_{2+x}Ru_{2-x}O_{7-y}$ (A = Bi,Pb) catalysts, 127, 421
- toluene over Ag_{1.2}V₃Ce_yO_{8+x} catalysts, catalytic and spectroscopic studies, **131**, 350
- o-xylene on V₂O₅/TiO₂ catalysts prepared by solidstate reaction
 - active phase formed during, characterization, 130, 238
- formation of $V^{\rm IV}$ interacting layer, 130, 220 Oxidative coupling

methane

- to C₂-hydrocarbons over rare-earth oxides, effect of catalyst acidity/basicity, **130**, 411
- over La₂O₃-CaO catalysts, effect of bulk and surface properties, **128**, 512
- over Li/MgO catalysts, associated surface phenomena, 131, 143
- LiNiO₂ catalysts for, oxygen surface species, characterization and interaction with carbon oxides, 132, 92
- over MgO catalysts, effects of doping with zinc and manganese oxides, 130, 147
- over Na-doped CaO catalysts: identification of active phase, 128, 264
- over Sm₂O₃ catalysts, surface coverages during, steady-state vs. non-steady-state transient kinetic analysis, **132**, 556
- over SrCO₃-supported metal oxide catalysts, 127,
- methylbenzenes by metal oxide catalysts, 131, 215 Oxidative dehydrogenation
 - alcohols on Cu(110) catalysts, molecular beam study, 131, 104
 - cyclohexane over vanadate catalysts, 128, 287 ethane over Cl-promoted Li⁺-MgO catalysts, 131,
 - 513 isobutyric acid to methacrylic acid on ion exchange-
 - isobutyric acid to methacrylic acid on ion exchangemodified 12-heteropoly oxometalates, **132**, 100

Oxides

- acid-base reactions, role in inhibition of vanadium attack on REY zeolites, 129, 269
- $Ag_{1.2}V_3Ce_yO_{8+x}$ catalysts, toluene oxidation, catalytic and spectroscopic studies, 131, 350
- $A_{2+x}Ru_{2-x}O_{7-y}$ (A = Bi,Pb)
 - catalysis of liquid-phase oxidation of vicinal diols, primary alcohols, and related substrates with molecular oxygen, 127, 393
 - surface analysis by electron microscopy, XPS, and temperature-programmed reduction and oxidation, 127, 421

- Cu-La-O, ZrO₂-supported catalysts, activity for reaction of NO and CO, 132, 560
- La_{2-x}Sr_xCuO_{4-δ} superconducting systems, catalytic CO oxidation between 373 and 523 K, 131, 582
- Sb-V-Mn-O, catalysis of 2-methylpyrazine ammoxidation, TPD-TPR-MS mechanistic study, 130, 392
- V-Mg-O catalysts, oxidative dehydrogenation of cyclohexane, 128, 287
- V-P-O, catalysts for n-butane oxidation to maleic anhydride, Zn as promoter for, location and function, 130, 347
- Zn-Cr-O, support of Pd catalysts, 2-methylpyrazine synthesis, TPD-TPR-MS mechanistic study, 130, 403

Oxoperoxometallates

epoxidation of cyclohexene under phase-transfer conditions, 127, 42

Oxygen

adsorption on

catalytically promoted gasification chars, microcalorimetric study, 132, 388

Pt catalyst surfaces, analysis in situ with solid electrolyte cyclic voltammetry, 129, 67

Pt powder and Pt/SiO₂, and H₂ titration of adsorbed O₂, enthalpy changes, **129**, 31

chemisorption by

 Pt/γ - Al_2O_3 pellets, ¹²⁹Xe NMR study, **128**, 447 Pt- Sn/Al_2O_3 catalysts, analysis, **127**, 287

covered Cu(110) catalysts, oxidative dehydrogenation of alcohols, molecular beam study, **131**, 104

diffusion into Pt/ γ -Al₂O₃ pellets, ¹²⁹Xe NMR study, **128**, 447

effects on

gas-phase hydrogenation of 2-ethyl-hexenal over Al₂O₃-supported Pd, Pt, Rh, and Ru catalysts, 132, 402

shape and structure of Pt-Ce and Rh-Ce particles supported on SiO₂, **128**, 161

gasification of graphite over transition metal oxide catalysts, 130, 161

heat of adsorption on Ag/Al₂O₃ catalysts, direct measurement, 128, 148

-hydrogen reaction on Pt catalysts, kinetics, 132, 210

and methane, formation by electrocatalytic conversion of CO₂ with oxygen ion-conducting electrolyte, **129**, 216

modified Mo(111), hydrogenolysis of methylcyclopropane: appearance of acid site, 130, 556

modified tungsten carbide catalysts, bifunctional reactions of alkanes, 131, 523

molecular

liquid-phase oxidation of vicinal diols, primary alcohols, and related substrates over expanded lattice Ru pyrochlore oxide catalysts, 127, 393

- oxidation of cyclohexene over polyoxoanion-supported atomically dispersed transition metal catalysts, 128, 84
- reaction with CO over supported Rh catalysts, effects of metal particle size and support, 128, 526
- reactive lattice sites for selective oxidation of C₄ hydrocarbons over β-VOPO₄ catalysts, analysis, **128**, 113
- spillover, role in N-ethyl formamide dehydration over MoO₃-Sb₂O₄ catalysts, **132**, 183

surface

effect on catalytic reactions of n-alkanes on β - W_2C and WC catalysts, 130, 498

on LiNiO₂ methane coupling catalysts, characterization and interaction with carbon oxides, 132, 92

on WC and β-W₂C catalysts, effects on pathways for reactions of neopentane, methylcyclohexane, and 3,3-dimethylpentane, 130, 86

Oxygen ions

conducting electrolyte, in electrocatalytic conversion of CO₂ to methane and O₂, **129**, 216

P

Palladium

Al₂O₃-supported catalysts

adsorption sites: CH₃O formation and hydrogenation rates, **132**, 145

bimetallic, alloyed with Ge, Pb, Sb, or Sn from organometallics, gas-phase dehydrogenation of valylene and isoprene, 129, 47

gas-phase dehydrogenation of 2-ethyl-hexenal, effect of oxygen, 132, 402

heptane oxidation, effects of catalyst structure and carbon deposition, 130, 374

methane oxidation, effect of Ce additives, 132, 287

δ-Al₂O₃-supported catalysts

reduced, CO oxidation, 131, 1

unreduced, CO oxidation, 127, 465

carbon-supported unreduced catalysts, CO oxidation, 127, 465

clusters and adducts with protons, zeolite-encaged, conversion of methylcyclopentane, 129, 121

-Cr catalysts, SiO₂-supported, characterization and catalytic properties, **128**, 99

-Cu particles

δ-Al₂O₃-supported catalysts, CO oxidation, **131**, 36

in zeolite Y, oxidative leaching of Cu atoms from, analysis, 131, 502

-Cu unreduced catalysts

δ-Al₂O₃-supported, CO oxidation, **127**, 489 carbon-supported, CO oxidation, **127**, 489

dispersed catalysts, active site densities, determination with single turnover procedure, evaluation, 127, 675 films, catalysis of deuterium exchange and decomposition reactions of methylhydrazine and 1,1dimethylhydrazine, 129, 25

-H⁺ electron-deficient adducts, formation in zeolite Y, effects of Ca²⁺ and Mg²⁺, 128, 13

HY and NaY-supported catalysts, surface reactions of methylcyclopentane, temperature-programmed studies, 132, 266

modified Al₂O₃-supported catalysts, methanol decomposition, TPD and XPS analyses, **128**, 198 montmorillonite-anchored complexes, synthesis and selective hydrogenation activity, **130**, 41

particles

encaged in zeolite Y, CO-induced growth, EXAFS evidence, 127, 213

evaporated on carbonaceous supports, catalysis of 1,3-butadiene hydrogenation, particle size effect, 129, 1

Pd(II) compounds, adsorption/impregnation onto Al₂O₃, effect of calcination temperature of alumina, 132, 422

PdNi_x, formation in cages of NaY, mechanisms, 131, 573

powder and supported catalysts, hydrogenation of toluene and xylene

kinetics and xylene isomerization, 127, 251 reaction model, 127, 267

-Pt/TiO₂ bimetallic catalysts, characterization and synthesis by photocatalytic codeposition at ambient temperature, 132, 490

SiO₂-supported catalysts, propene hydroformylation, mechanistic study: effect of added Na⁺, 130, 106

Zn-Cr-O-supported catalysts, 2-methylpyrazine synthesis, TPD-TPR-MS mechanistic study, 130, 403

ZrO₂-supported catalysts prepared from amorphous precursors, XRD and Raman studies: identification of ZrO₂ modifications, 130, 657

Palladium hydride

powder, isotope-exchange reaction with gaseous H₂, mechanistic studies, 130, 268

Paraffins

C₆-C₈, dehydrocyclization to aromatics over TiO₂-ZrO₂ catalysts, 130, 577

cracking over zeolites: relationship of catalyst properties to performance, 127, 51

Particles 4 1

CeO₂, size in catalysts, empirical determination by Raman spectroscopy, **130**, 310

Co/graphite, reactivity during gasification, in situ electron microscopic analysis, 128, 137

Cu/SiO₂, structure and reactivity, effect of reduction treatment, 131, 178

Pd

encaged in zeolite Y, CO-induced growth, EXAFS evidence, 127, 213

evaporated on carbonaceous supports, catalysis

of 1,3-butadiene hydrogenation, particle size effect, 129, 1

Pd-Cu

 δ -Al₂O₃-supported catalysts, CO oxidation, 131, 36

in zeolite Y, oxidative leaching of Cu atoms from, analysis, 131, 502

Pt

SiO₂-supported

effect of Sn addition: microstructural changes, **129**, 473

interaction with Ce: microstructure and reactivity, 128, 161

size effects on

H₂ chemisorption by Pt/C catalysts, **128**, 397 kinetics of propane oxidation over Pt/γ-Al₂O₃ catalysts, **131**, 243

Rh, SiO₂-supported

effect of Sn addition: microstructural changes, 129, 473

interaction with Ce: microstructure and reactivity, 128, 161

size, effect on properties of supported Rh catalysts: CO-O₂ and CO-NO reactions, **128**, 526

supported metal catalyst, size distribution, dynamic equations for, solution, 130, 588

Pellets

catalyst, effective diffusivities: model porous structures and transport simulation techniques, **129**, 457

Pentane

skeletal isomerization over ZrO₂ catalysts promoted by Pt and SO₄²⁻, 130, 257

Pentenes

linear and branched, formation of butenes and hexenes over Ru/SiO₂ catalysts: mechanisms of C—C formation and cleavage on metal surfaces, **132**, 472

pН

effect on surface hydroxylation during MgO synthesis by sol-gel method, 127, 75

Phases mobility in Ni–TiO_x systems, role of hydrogen, 131,

SnO₂ and α-Sb₂O₄, cooperation in selective oxidation of isobutene to methacrolein: analysis of coprecipitated catalysts, **132**, 360

impregnated catalysts, 132, 343

mechanically mixed catalysts, 132, 319

Phase-transfer catalysts

immobilized, sulfonated resins as, preparation for hydrolysis of benzophenone azine to hydrazine, 130, 547

Phenol

hydroxylation

with H₂O₂ over TS-1 zeolites: catalytic properties, 131, 294

over TS-2 catalysts with MEL structure, 130, 440

Phosphate

effect on hydrodenitrogenation activity and selectivity of Al₂O₃-supported Mo, Ni, and Ni-Mo sulfided catalysts, 131, 412

12-Phosphomolybdic acid

alkali salts, catalysis of acetaldehyde oxidation, selectivity-controlling factors, 131, 133

derived microporous monovalent salts, ion-exchange properties, 128, 69

doped polyacetylene catalysts, ethyl alcohol conversion, 132, 311

ion-exchanged, pore structure and morphology, 130, 483

 SiO_2 -supported catalysts, interaction with Cs ions, 128, 479

Phosphoric acid

adsorption on γ -Al₂O₃, mechanism, 132, 465

Phosphorus

effect on structure and hydrodesulfurization activity of sulfided Co and Co-Mo catalysts supported on carbon and γ-Al₂O₃, **128**, 559

modified H-ZSM-5 zeolites, spectroscopic and physicochemical characterization, 132, 229

promoted hydrotreating catalyst precursors, FT-IR and solid-state NMR studies, 132, 498

V-O catalysts for n-butane oxidation to maleic anhydride

synthesis and characterization, 128, 248

Zn as promoter for, location and function, 130, 347

Phosphorus pentoxide

Al₂O₃-supported catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, **129**, 12

12-Phosphotungstic acid

catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, 129, 12

derived microporous monovalent salts, ion-exchange properties, 128, 69

ion-exchanged, pore structure and morphology, 130, 483

Photocatalysis

heterogeneous, associated flow of photons reflected and absorbed by aqueous dispersions containing polycrystalline solids, experimental determination, 127, 332

metal codeposition, in synthesis of TiO₂-supported bimetallic catalysts at ambient temperature, **132**, 490

oxidation, kinetics, role of reactor dynamics, 131, 285

TiO₂-mediated, cresol mineralization in aqueous media, **128**, 352

Photodecomposition

water on semiconductors, associated hydrogen evolution, MoS₂/SiO₂ as catalysts for, evaluation, 131, 156

Photodegradation

3-chlorosalicylic acid over TiO₂ membranes supported on glass, kinetic studies, 127, 167

Photons

reflected and absorbed by aqueous dispersions containing polycrystalline solids, flow in heterogeneous photocatalysis, experimental determination, 127, 332

Pillaring

montmorillonite and beidellite, effect on conversion of trimethylbenzenes, 128, 487

Piperidine

hydrogenolysis on commercial hydrocracking catalysts, reaction and deactivation kinetics, 131,

Platinum

Al₂O₃-supported catalysts

dynamic oxidation of CO, 127, 307

gas-phase dehydrogenation of 2-ethyl-hexenal, effect of oxygen, 132, 402

heptane oxidation, effects of catalyst structure and carbon deposition, 130, 374

methane oxidation, effect of Ce additives, 132, 287

microchemisorption, apparatus, 127, 788

morphology, chemisorption properties and reactivities, effect of sulfur poisoning, 130, 359

sulfur-aided SMSI, analysis, 130, 662

with very small surface area, area determination by $CO-H_2$ titration, letter to editor, 127, 457; reply, 127, 460

 β'' -Al₂O₃-supported catalysts, activity, non-faradaic electrochemical modification, **128**, 415

γ-Al₂O₃-supported catalysts

1-hexene isomerization, effects of reaction mixture density and temperature, 131, 445

 H_2 and O_2 diffusion into and chemisorption by, 129 Xe NMR study, 128, 447

propane oxidation, kinetics, effects of Pt concentration and particle size, 131, 243

Al₂O₃-TiO₂ composite oxide-supported catalysts, structure and activity, **127**, 201

-Au/SiO₂ bimetallic catalysts, neopentane reactions, 132, 451

carbon-supported catalysts

H₂ chemisorption, effects of carbon support and mean Pt particle size, 128, 397

preparation, 131, 335

catalysis of

CO oxidation, kinetics and multiple rate states linkage of ultrahigh vacuum and atmospheric pressure behavior, 127, 553

model development and multiplicity analysis, 127, 524

methane oxidation: electrochemical enhancement, 130, 306

methanol oxidation, effect of non-Faradaic electrochemical modification of catalytic activity, 127, 645

- oscillatory oxidation of CO at 10-760 torr, 127, 512
- oxygen-hydrogen reaction, kinetics, 132, 210 catalyzed hydrosilylation, intermediacy of metal

colloids in, morphologic and catalytic studies, **127**, 67

- catalyzed oxidation of H₂, derived OH, imaging by spatially resolved laser-induced fluorescence, **128**, 92
- -Ce particles, SiO₂-supported, microstructure and reactivity, 128, 161
- coated Au catalysts, SO₂ adsorption and reactions: surface-enhanced Raman spectroscopy at transition metal-gas interfaces, **130**, 62
- colloidal, surface chemistry: IR and NMR studies of CO adsorption, 129, 530
- dispersed catalysts
 - active site densities, determination with single turnover procedure, evaluation, 127, 675
 - interactions with CO and NO, effect of CeO₂, 130, 181
- films, catalysis of deuterium exchange and decomposition reactions of methylhydrazine and 1,1dimethylhydrazine, 129, 25
- foil, clean and vanadium oxide-coated catalysts, NO reduction by NH₃, 129, 186
- -Ga, loaded HZSM-5 zeolites, reduction by hydrogen, 130, 611
- -Ir bimetallic reforming catalysts, metal interactions and IrO₂ agglomeration, effect of chloride and water vapor, 131, 378
- MgO-supported catalysts, n-hexane aromatization on catalyst clusters with high surface area support, 132, 269
- modified γ -Al₂O₃ model catalysts, electron spectroscopic study, **130**, 332
- oxidation catalysts, stabilization and activation by exfoliated MoS₂, 131, 127
- particles, supported, carbon deposition, 123, 486; erratum, 127, 790
- -Pd/TiO₂ bimetallic catalysts, characterization and synthesis by photocatalytic codeposition at ambient temperature, 132, 490
- polycrystalline foils as model catalysts, NO reduction by NH₃ at atmospheric pressures, 132, 440
- powder, O₂ adsorption and H₂ titration of adsorbed O₂, enthalpy changes, **129**, 31
- Pt(111) crystalline catalysts, hydrogenation of olefins, 129, 356
- -Rh/TiO₂ bimetallic catalysts, characterization and synthesis by photocatalytic codeposition at ambient temperature, 132, 490
- SiO₂-supported catalysts
 - cinchona-modified, methyl pyruvate hydrogenation, variation of activity and optical yield with experimental variables, 128, 387
 - coating of SiO₂ support with Al₂O₃, TiO₂, and La₂O₃, **129**, 447

- ethene deuterogenation, promotion by Na, 131, 276
- methyloxirane hydrogenolysis and isomerization, structure sensitivity, 129, 519
- O₂ adsorption and H₂ titration of adsorbed O₂, enthalpy changes, **129**, 31
- Pt crystallite size, effects on H₂ and CO heats of adsorption and CO hydrogenation, 130, 9
- surface species from chemisorbed ethane, thermal decomposition, associated breaking of C—C bonds, IR spectroscopic study, 127, 445
- -Sn catalysts
 - Al₂O₃-supported
 - alloy formation in, Mössbauer studies, 128, 1 chemisorption and XPS studies, 127, 287 electron microdiffraction study, 129, 257 neopentane reactions, 132, 451
 - SiO₂-supported
 - alloy formation in, Mössbauer studies, 128, 1 ethylene hydrogenation, kinetics, 127, 342 microstructure, 129, 473
- SnO_x-supported catalysts
 - CO oxidation, mechanism, 130, 314
 - low-temperature CO oxidation: comparison with Au/MnO_x catalysts, 129, 114
- and SO₄²⁻, promoted ZrO₂ catalysts, skeletal isomerization of hydrocarbons, **130**, 257
- surface analysis in situ with solid electrolyte cyclic voltammetry, 129, 67
- TiO₂-supported catalysts
 - morphology and SMSI effects on chemisorption properties and reactivities, 130, 359
- SMSI reversal by CO hydrogenation, 128, 186 unsupported catalysts, ethylene hydrogenation, kinetics, 127, 342
- zeolite-supported catalysts
 - reforming of *n*-hexane, kinetic and mechanistic considerations, **129**, 145
 - selective hydrogenation of α, β -unsaturated aldehydes, geometric and electronic effects, 131, 401
- ZrO₂-supported catalysts, heptane oxidation, effects of catalyst structure and carbon deposition, 130, 374
- -ZSM-5 catalysts, structural studies, 127, 366 Platinum black
- catalysis of solid-state tritiation of thymine, **130**, 569 Poisoning
- by Fe, electrolytic Ag catalysts for partial oxidation of methanol, 129, 414
- by S, Pt/Al₂O₃ catalysts, effects on chemisorption properties and reactivities, **130**, 359
- by SO₂, Rh/γ-Al₂O₃ catalysts prepared by co-impregnation, 128, 48
- Polyacetylene
 - 12-molybdophosphoric acid-doped catalysts, ethyl alcohol conversion, 132, 311
- Polycrystalline solids
 - aqueous dispersions containing, flow of reflected

and absorbed photons in heterogeneous photocatalysis, experimental determination, 127, 332 Polymerization

α-olefins with Ziegler-Natta catalysts, trigger mechanism: two-monomer transition state and monomer activation of catalytic centers, 129, 383

and simultaneous oligomerization, acetylene on fluoridated and nonfluoridated Al2O3 catalysts, **131**, 305

stereospecific, propylene oxide on thermally activated synthetic hydrotalcite, 130, 354

Polymers

support of Mo and V catalysts for cyclohexene epoxidation: activation, activity, and stability, **131**, 115

Polyoxoanions

support of atomically dispersed transition metal catalysts, cyclohexene oxidation with O2, 128, 84

Pores

in anodic alumina films, metal deposition under hydrotreating conditions, visualization, 127, 178 Porous catalysts

for hydrodemetallation, description and deactivation-associated metal sulfide deposits, randomspheres model, 132, 41

shape selectivity, 131, 319

Potassium

-Co-Rh-Mo, Al₂O₃-supported catalysts for synthesis of higher alcohols, adsorption of CO, 132,

dispersion on Ru/SiO2 catalysts, 130, 283

microporous salts of 12-tungstophosphoric and 12molybdophosphoric acid catalysts, ion-exchange properties, 128, 69

modified Al₂O₃, support of Pd catalysts, methanol decomposition, TPD analysis, 128, 198

promoted Fe/TiO2 catalysts, NH3 synthesis, kinetics, effect of hydrazine pretreatment, 127, 227 promoted gasification chars, adsorption of oxygen, microcalorimetric study, 132, 388

substituted sepiolites, evaluation as strong base catalysts, 130, 130

Potassium pyrosulfate

SiO₂-supported catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, 129, 12

Potassium vanadate

SiO₂-supported catalysts, ethane oxidation, 129, 497 **Powders**

sputtering behavior, XPS-based model: depth profiling of catalyst samples, 130, 627

Precipitation

co-, see Coprecipitation

-deposition, Ni/SiO₂ catalysts prepared by, adsorbed state of Ni(II) ions, EXAFS characterization, 130, 21

Pressure

atmospheric

NO reduction by NH3 at, catalysis by Pt polycrys-

talline foils as model Pt catalysts, 132, 440 and ultrahigh vacuum, CO oxidation on Pt catalysts at, kinetics and multiple rate states, 127, 553

effect on oscillatory oxidation of CO over Pt catalysts, 127, 512

2-Propanamine, see Isopropylamine

Propane

hydrogenolysis, in characterization of stability of Nb₂O₅ surface oxide supports, 127, 453

oxidation over Pt/y-Al₂O₃ catalysts, kinetics, effects of Pt concentration and particle size, 131, 243

Propan-1-ol, see n-Propyl alcohol

2-Propanol, see Isopropyl alcohol

Propene, see Propylene

Propionaldehyde

condensation with benzene derivatives over USY zeolites, 130, 138

synthesis from synthesis gas over Na-promoted Mn-Ni catalysts, 128, 569

n-Propyl alcohol

oxidative dehydrogenation on Cu(110) catalysts, molecular beam study, 131, 104

n-Propylamine

adsorption on SAPO-5 materials: analysis of acid sites, 131, 252

O-Propylaniline

hydrodenitrogenation over carbon-supported transition metal sulfide catalysts, 127, 605

i-Propylbenzene

ammoxidation over V-Sb-Bi oxide/Al₂O₃ catalysts, dehydrogenation mechanism, 127, 354

Propylene

adsorption on SAPO-5 materials: analysis of acid sites, 131, 252

homologation with methane over Ni/Al₂O₃ and Ni/ SiO₂ catalysts: surface characterization study,

hydroformylation over SiO2-supported Pd and Rh catalysts, mechanistic study: effect of added Na+, 130, 106

hydrogenation on CrO_x/ZrO₂ catalysts, 127, 777 and hydrogen peroxide, in synthesis of propylene oxide over titanium silicalite catalysts, 129,

159 metathesis over WO₃/SiO₂ catalysts: mechanism of catalyst induction, 127, 86

oxidation over Sb oxide dispersed on TiO2, structural and kinetic studies, 127, 698

partial oxidation over bismuth molybdate catalysts: stability of catalysts under reaction conditions, 132, 536

Propylene glycol

and ethylenediamine, cyclization over palladized Zn-Cr-O catalysts in synthesis of 2-methylpyrazine, TPD-TPR-MS mechanistic study, 130,

Propylene oxide

hydrogenolysis and isomerization over Pt/SiO₂ catalysts, structure sensitivity, 129, 519

ring opening selectivity, correlation with acid-base properties of oxides, 129, 303

stereospecific polymerization on thermally activated synthetic hydrotalcite, **130**, 354

synthesis from propylene and hydrogen peroxide over titanium silicalite catalysts, 129, 159

Protons

-Pd adducts

electron-deficient, formation in zeolite Y, effects of Ca²⁺ and Mg²⁺, 128, 13

encaged in zeolites, conversion of methylcyclopentane, 129, 121

Pseudocumene

disproportionation on montmorillonite and beidellite, effect of pillaring, 128, 487

Pyridine

adsorption on

SiO₂ and SiO₂-Al₂O₃, microcalorimetric measurements, **128**, 23

SiO₂-supported oxide catalysts, microcalorimetric measurement: analysis of catalyst acidity, 127, 706

hydrodenitrogenation on MoS_x-based catalysts, dual mechanism, 131, 204

hydrogenation on commercial hydrocracking catalysts, reaction and deactivation kinetics, 131, 545

Pyruvic acid

formation from tartaric acid, application of catalysts for vapor-phase dehydration of ethylene glycol, 129, 12

Q

Quinoline

hydrodenitrogenation over

Al₂O₃-supported sulfided Mo, Ni, and Ni-Mo catalysts, effect of phosphate, 131, 412

carbon-supported transition metal sulfide catalysts, 127, 619

R

Raman spectroscopy

in empirical determination of CeO₂ particle size in catalysts, 130, 310

surface-enhanced, transition metal-gas interfaces: SO₂ adsorption and reactions on Pt-, Rh-, and Ru-coated Au catalysts, **130**, 62

and x-ray diffraction, Cu/ZrO₂ and Pd/ZrO₂ catalysts prepared from amorphous precursors: identification of ZrO₂ modifications, **130**, 657

Rate parameters

intrinsic, Fischer-Tropsch synthesis, evaluation, 124, 297; comment, 132, 571; reply, 132, 573

Reaction sites

identification for ethylene hydrogenation over metallic Mo catalysts, 128, 320

Reactivation

Au catalysts during hydrochlorination of acetylene, mechanism, 128, 378

Reactor dynamics

role in kinetics of photocatalytic oxidation, 131, 285 Readsorption

α-olefins, transport-enhanced pathways in Ru-catalyzed hydrocarbon synthesis, 129, 238

Reduction

Cu/SiO₂ particles, effect on structure and reactivity, 131, 178

Fe/γ-Al₂O₃ high loading catalysts, analysis, **128**, 218 Ga-Pt loaded HZSM-5 zeolites by hydrogen, **130**, 611

Mo/Al₂O₃ catalysts at moderate temperature, subsequent determination of Mo(0), **130**, 653

Ni/MgO catalysts, temperature effects on catalyst structure and morphology, 132, 58

NO by CO over

La₂CuO₄/ZrO₂ catalysts, catalyst activity, **132**, 560

Rh/CeO₂ catalysts, enhancement by Gd₂O₃ doping of support, 131, 74

square and hexagonal surfaces, Monte Carlo simulations, 131, 369

supported Rh catalysts, effects of metal particle size and support, 128, 526

NO by H₂ over Rh/γ-Al₂O₃ catalysts prepared by coimpregnation, **128**, 48

NO by NH₃

at atmospheric pressures over Pt polycrystalline foils as model Pt catalysts, 132, 440

over clean and vanadium oxide-coated Pt foil catalysts, 129, 186

-oxidation, supported CuO catalysts prepared from copper(II) acetylacetonate, kinetics, 130, 447

Rh/SiO₂ catalysts promoted by Nb₂O₅ and V₂O₅, comparison, 127, 276

selective, NO by NH3 over

Fe₂O₃-Cr₂O₃-Al₂O₃ aerogel catalysts, **130**, 319 V₂O₃/SiO₂ catalysts, effects of promoters, **128**, 574

temperature-programmed, see Temperature-programmed reduction

TiO₂ with H₂: generation of basic sites, **127**, 221

lesins

sulfonated, preparation as immobilized phase-transfer catalyst for hydrolysis of benzophenone azine to hydrazine, 130, 547

Rhenium heptoxide

catalysis of oxidative coupling of methylbenzenes, 131, 215

Rhodium

Al₂O₃-supported catalysts

gas-phase dehydrogenation of 2-ethyl-hexenal, effect of oxygen, 132, 402

methane oxidation, effect of Ce additives, 132, 287

γ-Al₂O₃-supported catalysts

preparation by co-impregnation with HF, 128, 34

prepared by co-impregnation, NO reduction and SO₂ poisoning, 128, 48

-Ag/TiO₂ bimetallic catalysts, characterization and synthesis by photocatalytic codeposition at ambient temperature, 132, 490

catalytic properties, effects of metal particle size and support: CO-O₂ and CO-NO reactions, 128, 526

CeO₂-supported catalysts, NO reduction by CO, enhancement by Gd₂O₃ doping of support, **131**, 74

-Ce particles, SiO₂-supported, microstructure and reactivity, 128, 161

coated Au catalysts, SO₂ adsorption and reactions: surface-enhanced Raman spectroscopy at transition metal-gas interfaces, 130, 62

dispersed catalysts

active site densities, determination with single turnover procedure, evaluation, 127, 675

interactions with CO and NO, effect of CeO_2 , 130, 181

-K-Co-Mo, Al₂O₃-supported catalysts for synthesis of higher alcohols, adsorption of CO, 132, 375

La₂O₃-supported catalysts, thermal evolution of support promoter effect, 127, 719

-Pt/TiO₂ bimetallic catalysts, characterization and synthesis by photocatalytic codeposition at ambient temperature, 132, 490

Rh(111)

adsorption of CH₃, CH₂, and CH, molecular orbital studies, 127, 141

deactivated catalysts, CO oxidation, presence of carbonate surface species during, evidence, 128, 405

surfaces, decarbonylation of acetaldehyde and ethanol, divergent pathways, 130, 528

SiO₂-supported catalysts

CO hydrogenation, effect of pre-adsorbed sulfur, 129, 540

ethene hydroformylation, promoting effects of Se, 132, 566

Nb₂O₅- and V₂O₅-promoted, comparison: behaviors during calcination and reduction treatments, **127**, 276

propene hydroformylation, mechanistic study: effect of added Na⁺, 130, 106

-Sn catalysts supported on SiO₂, microstructure, **129**, 473

supported aqueous-phase catalysts

hydroformylation of linear, terminal, and internal olefins, 129, 100

preparation for hydroformylation reactions, 129,

zeolite-supported catalysts, selective hydrogenation of α,β -unsaturated aldehydes, geometric and electronic effects, **131**, 401

ZrO₂-supported catalysts adsorption of CO and NO, **132**, 275 promoting effects of Se for ethene hydroformylation, 127, 631

Ring enlargement

methylcyclopentane on Pd/NaY and Pd/HY catalysts, temperature-programmed studies, 132, 266

Ring expansion-contraction

aromatic, in conversion with ZSM-5 zeolite, analysis, 127, 96

Ring opening

methylcyclopentane on Pd/NaY and Pd/HY catalysts, temperature-programmed studies, 132, 266

2-methyloxirane, selectivity, correlation with acidbase properties of oxides, 129, 303

Rubidium

modified Al₂O₃, support of Pd catalysts, methanol decomposition, TPD analysis, **128**, 198

Rubidium vanadate

SiO₂-supported catalysts, ethane oxidation, 129, 497 Ruthenium

Al₂O₃-supported catalysts

CO₂ methanation, FTIR study, **129**, 130

gas-phase dehydrogenation of 2-ethyl-hexenal, effect of oxygen, 132, 402

 $A_{2+x}Ru_{2-x}O_{7-y}$ (A = Bi,Pb)

catalysis of liquid-phase oxidation of vicinal diols, primary alcohols, and related substrates with molecular oxygen, 127, 393

catalyst surface analysis by electron microscopy, XPS, and temperature-programmed reduction and oxidation, 127, 421

catalyzed hydrocarbon synthesis, transport-enhanced α-olefin readsorption pathways in, analysis, 129, 238

coated Au catalysts, SO₂ adsorption and reactions: surface-enhanced Raman spectroscopy at transition metal-gas interfaces, **130**, 62

 -Cu catalysts supported on SiO₂, characterization by IR spectroscopy of adsorbed CO, 129, 402

KY zeolite-supported catalysts, CO hydrogenation, effect of nitromethane addition, 128, 311

-Me alloys (Me = Ge,Pb,Sb,Si,Sn), Al₂O₃-supported, catalytic properties, **128**, 275

SiO₂-supported catalysts

formation of butenes and hexenes from linear and branched pentenes: mechanisms of C—C formation and cleavage on metal surfaces, 132, 472

homologation and hydrogenolysis of linear and branched butenes and butanes, 131, 457

potassium dispersion on, analysis, 130, 283

-TiO₂ interface, surface oxide films at, formation and H₂/CO chemisorption, temperature effects, 130, 173

TiO₂-loaded catalysts supported on SiO₂, strong metal-support interactions, **129**, 486

TiO₂-supported catalysts

CO₂ methanation, FTIR study, 129, 130

deactivation during Fischer-Tropsch synthesis, isotopic tracer study, 130, 597

zeolite-supported catalysts, selective hydrogenation of α , β -unsaturated aldehydes, geometric and electronic effects, **131**, 401

Ruthenium sulfide

unsupported catalysts, hydrogen activation on, effect of progressive desulfurization, 132, 253

S

Samarium oxide

acidity/basicity, relationship to catalytic activity for oxidative coupling of methane to C₂-hydrocarbons, **130**, 411

catalysts, surface coverage during oxidative coupling of methane, steady-state vs. non-steadystate transient kinetic analysis, 132, 556

Scandium oxide

SiO₂-supported catalysts, acidity, analysis by microcalorimetric measurements of pyridine adsorption, **127**, 706

Selectivity

2-methyloxirane ring opening, correlation with acid-base properties of oxides, 129, 303

shape

in porous catalysts, analysis, 131, 319

in toluene alkylation and disproportionation over H-ZSM-5 modified by chemical vapor deposition of silicon alkoxide, **128**, 551

zeolites H-ZSM-22, -48, and -50 in sorption, analysis, **129**, 293

Y zeolites in *n*-heptane cracking, effect of extraframework Al species, **130**, 471

Selenium

promoting effects on

Rh/SiO₂ catalysts for ethene hydroformylation,

Rh/ZrO₂ catalysts for ethene hydroformylation, 127, 631

Senecialdehyde

hydrogenation over zeolite-supported metals, selectivity, geometric and electronic effects, **131**, 401 Sepiolite

alkaline-substituted, evaluation as strong base catalysts, 130, 130

Silanol

bending vibration in TiO₂-SiO₂ catalysts, IR band frequency, correlation with acid catalytic activity, **132**, 563

Silica, see Silicon dioxide

Silica aluminophosphates

SAPO-5, acid site analysis, 131, 252

Silicalite

impregnated or in situ loaded with cobalt oxide, comparison studies, 128, 458

type 1, Na-modified, catalysis of methanol dehydrogenation to formaldehyde, active sites, 131, 226

Silicon

effect on thermal stability of γ -Al₂O₃ toward sintering, 127, 595

-Ru alloys, Al₂O₃-supported, catalytic properties, 128, 275

Silicon alkoxide

modification of H-ZSM-5 zeolites by chemical vapor deposition, effect on shape selectivity for toluene alkylation and disproportionation, 128, 551 Silicon dioxide

acidic properties, analysis by inverse gas chromatography at infinite dilution, 131, 433

adsorption of basic molecules, microcalorimetric measurements, 128, 23

-Al₂O₃

acidic properties, analysis by inverse gas chromatography at infinite dilution, 131, 433

adsorption of basic molecules, microcalorimetric measurements, 128, 23

support of Pd catalysts, hydrogenation of toluene and xylene

kinetics and xylene isomerization, 127, 251 reaction model, 127, 267

support of Pt catalysts, 129, 447

La₂O₃-coated, support of Pt catalysts, 129, 447

 -MgO catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, 129, 12

-Ni₂O₅ surface phase and mixed oxides, acidic properties, 129, 38

support of

alkali metal vanadate catalysts, ethane oxidation, 129, 497

Cu catalysts, structure and reactivity, effect of reduction treatment, 131, 178

CuO catalysts prepared from copper(II) acetylacetonate, selective chemisorption and oxidation/ reduction kinetics, 130, 447

Ir₄(CO)₁₂ catalysts, 1,5-cyclooctadiene isomerization, reaction yield optimization, kinetic approach, 129, 288

metal catalysts, active site densities, determination with single turnover procedure, evaluation, 127, 675

Mo catalysts irradiated by UV, coordination sphere of Mo⁵⁺ in, EPR study, letter to editor, 131, 300

12-molybdophosphoric acid catalysts, interaction with Cs ions, 128, 479

MoS₂ catalysts, as hydrogen evolution catalysts for water photodecomposition on semiconductors, evaluation, 131, 156

Ni catalysts

catalyst properties: relationship to ether formation from alcohols, 128, 337

prepared by deposition-precipitation, adsorbed state of Ni(II) ions, EXAFS characterization, 130, 21 NiCo-Mo hydrodesulfurization catalysts, structure and activity, 131, 385

oxide catalysts, acidity, analysis by microcalorimetric measurements of pyridine adsorption, 127, 706

Pd catalysts

hydroformylation of propene, mechanistic study: effect of added Na⁺, 130, 106

hydrogenation of toluene and xylene, kinetics and xylene isomerization, 127, 251

Pd-Cr catalysts, characterization and catalytic properties, 128, 99

P₂O₅ catalysts for vapor-phase dehydration of ethylene glycol, application to pyruvic acid synthesis, **129**, 12

Pt catalysts

cinchona-modified, methyl pyruvate hydrogenation, variation of activity and optical yield with experimental variables, 128, 387

ethylene deuterogenation, promotion by Na, 131, 276

ethylene hydrogenation, kinetics, 127, 342 methyloxirane hydrogenolysis and isomerization, structure sensitivity, 129, 519

O₂ adsorption and H₂ titration of adsorbed O₂, enthalpy changes, **129**, 31

Pt crystallite size, effects on H₂ and CO heats of adsorption and CO hydrogenation, 130, 9

surface species from chemisorbed ethane, thermal decomposition, associated breaking of C—C bonds, IR spectroscopic study, 127, 445

Pt-Sn bimetallic catalysts

alloy formation in, Mössbauer study, 128, 1 microstructure, 129, 473

neopentane reactions, 132, 451

Rh catalysts

CO hydrogenation, effect of pre-adsorbed sulfur, 129, 540

ethene hydroformylation, promoting effects of Se, 132, 566

promotion by Nb_2O_5 and V_2O_5 , comparison: behaviors during calcination and reduction, 127, 276

propene hydroformylation, mechanistic study: effect of added Na⁺, **130**, 106

properties, effects of metal particle size and support: CO-O₂ and CO-NO reactions, 128, 526

Rh-Sn bimetallic catalysts, microstructure, 129, 473

Ru catalysts

formation of butenes and hexenes from linear and branched pentenes: mechanisms of C—C formation and cleavage on metal surfaces, 132, 472

homologation and hydrogenolysis of linear and branched butenes and butanes, 131, 457 K dispersion on, analysis, 130, 283 RuCu catalysts, characterization by IR spectroscopy of adsorbed CO, 129, 402

Ru/TiO₂ catalysts, strong metal-support interactions, 129, 486

V₂O₅ catalysts

active for selective reduction of NO, effects of promoters, 128, 574

ethane oxidation, role of adsorbate bonding, 128, 210

surface oxide-support interactions at surface redox sites, 129, 307

WO₃ catalysts, propene metathesis: mechanism of catalyst induction, 127, 86

surfaces, TiO₂ monolayer coatings, formation, 131, 260

-TiO₂ catalysts, silanol bending vibration, IR band frequency, correlation with acid catalytic activity, 132, 563

TiO₂-coated, support of Pt catalysts, **129**, 447 Silver

Ag_{1.2}V₃Ce_yO_{8+x} catalysts, toluene oxidation, catalytic and spectroscopic studies, **131**, 350

Al₂O₃-supported catalysts, adsorption of butadiene, ethylene, and oxygen, heat measurements, **128**, 148

polycrystalline catalysts prepared by electrolysis for partial oxidation of methanol, poisoning by Fe, 129, 414

-Rh/TiO₂ bimetallic catalysts, characterization and synthesis by photocatalytic codeposition at ambient temperature, 132, 490

 -V catalysts, selective oxidation of toluene to benzaldehyde, analysis, 129, 426

Single turnover procedure

in determination of active site densities on dispersed metal catalysts, evaluation, 127, 675

Sintering

effect on hydrogen uptake by Ni catalysts supported on porous Vycor glass, 129, 544

thermal, stability of γ -Al₂O₃ toward, effect of silicon addition, 127, 595

Size distribution

supported metal catalyst particles, dynamic equations for, solution, 130, 588

SMSI, see Strong metal-support interaction Sodium

addition to SiO₂-supported Pd and Rh catalysts, effect on hydroformylation of propene, 130, 106

doped CaO catalysts for oxidative coupling of methane, identification of active phase, 128, 264

modified Al₂O₃, support of Pd catalysts, methanol decomposition, TPD analysis, 128, 198

modified silicalite-1, catalysis of methanol dehydrogenation to formaldehyde, active sites, 131, 226

promoted Mn-Ni catalysts, aldehyde synthesis from synthesis gas, 128, 569

promotion of ethene deuterogenation over Pt/SiO₂ catalysts, 131, 276

substituted sepiolites, evaluation as strong base catalysts, 130, 130

Sodium hydroxide

 alkaline earth oxide catalysts, surface interaction with methane, 129, 106

Sodium vanadate

SiO₂-supported catalysts, ethane oxidation, **129**, 497 Sol-gel method

in synthesis of MgO: effect of pH on surface hydroxylation, 127, 75

Solids

porous, transport in, Monte Carlo simulations: effective diffusivities in catalyst pellets, **129**, 457

Sorbates

shape, selectivity of zeolites H-ZSM-22, -48, and -50, analysis, 129, 293

Sorption

quasi-equilibrium, Ar on coked H-Y zeolite, analysis, 128, 436

transient, cyclopropane in NaX zeolite, analysis, 131, 94

in zeolites

H-ZSM-22, -48, and -50, shape selectivity, **129**, 293

rho, properties, 127, 9

Spectrophotometry

in determination of relative strengths of solid acids, 127, 128

Spectroscopy, see also specific techniques

 $Ag_{1,2}V_3Ce_yO_{8+x}$ catalysts for toluene oxidation, 131, 350

Spillover

CO on Ni/Al₂O₃ catalysts: formation and decomposition of methoxy species, **127**, 732

Spinels

NiAl₂O₄ and CoAl₂O₄, surface properties, comparison with δ-Al₂O₃, FTIR study, **131**, 167

Spreading

 MoO_3 on surface of γ - Al_2O_3 , EXAFS study, **130**, 192 Sputtering

powder materials, XPS-based model: depth profiling of catalyst samples, 130, 627

Stability

γ-Al₂O₃ toward thermal sintering, effect of silicon addition, **127**, 595

bismuth molybdate catalysts at elevated temperatures in air and under reaction conditions for partial oxidation of propylene, analysis, 132, 536

Nb₂O₅ surface oxide supports, characterization: propane hydrogenolysis as chemical probe, 127, 453

thermal, zeolite beta, analysis, 132, 432

Y zeolites in *n*-heptane cracking, effect of extraframework Al species, 130, 471

Stannic oxide

and α-Sb₂O₄, phase cooperation in selective oxidation of isobutene to methacrolein: analysis of coprecipitated catalysts, **132**, 360

impregnated catalysts, 132, 343 mechanically mixed catalysts, 132, 319

Strong metal-support interaction

effect on chemisorption properties and reactivities of Pt/TiO₂ catalysts, **130**, 359

in Pt/TiO₂ catalysts, reversal by CO hydrogenation, 128, 186

sulfur-aided, in Pt/Al_2O_3 catalysts, analysis, 130, 662 in $TiO_2/Ru/SiO_2$ model dispersed catalysts, analysis, 129, 486

Strontium

La_{2-x}Sr_xCuO_{4-δ} superconducting systems, catalytic CO oxidation between 373 and 523 K, **131**, 582 Strontium carbonate

support of metal oxide catalysts, oxidative coupling of methane, 127, 1

Structure

Al₂O₃-TiO₂ composite oxide-supported catalysts, 127, 201

carbon support in Mo catalysts, effect on catalyst behavior, 129, 330

Cu/Al₂O₃ catalysts, changes during oxidation of CO, **129**, 297

Cu/SiO₂ particles, effect of reduction treatment, 131, 178

MEL, titanium silicate TS-2 with, analysis, 130, 440 MFI, Ti-rich silicates with, synthesis and characterization, 130, 1

micro-, see Microstructure

monolayer, V₂O₅/γ-Al₂O₃ catalysts, IR spectroscopic analysis with probe molecules, **127**, 665 NiCo-Mo/SiO₂ hydrodesulfurization catalysts, **131**, 385

Ni/MgO catalysts, effects of calcination and reduction temperature, 132, 58

pore, ion-exchanged 12-heteropoly oxometalates, characterization, 130, 483

Sb oxide dispersed on TiO₂, analysis, 127, 698

sulfided Co and Co–Mo catalysts supported on carbon and γ -Al₂O₃, effect of phosphorus, **128**, 559

surface

role in CO hydrogenation on Co catalysts, 128, 231

V-Ti-O catalysts prepared by solid-state reaction formation of V^{IV} interacting layer, 130, 220 nature of active phase formed during o-xylene oxidation, 130, 238

V-Ag catalysts in selective oxidation of toluene to benzaldehyde, 129, 426

Sulfate

modified AlPO₄, NMR characterization, **130**, 642 and Pt, promoted ZrO₂ catalysts, skeletal isomerization of hydrocarbons, **130**, 257

 -ZrO₂ solid superacid catalysts, butane conversion in presence of hydrogen, analysis, 131, 199

Sulfiding

effect on tris(ethylenediamine) cobalt molybdate-derived hydrotreating catalyst, 131, 298

Sulfur

aided metal-support interaction in Pt/Al₂O₃ catalysts, analysis, **130**, 662

poisoning of Pt/Al₂O₃ catalysts, effects on chemisorption properties and reactivities, 130, 359

pre-adsorbed, effect on CO hydrogenation over Rh/ SiO₂ catalysts, 129, 540

Sulfur dioxide

adsorption and reactions on Pt-, Rh-, and Rh-coated Au catalysts: surface-enhanced Raman spectroscopy at transition metal-gas interfaces, 130, 62

poisoning of Rh/γ-Al₂O₃ catalysts prepared by coimpregnation, **128**, 48

Sulfuric acid

formation, supported liquid phase catalysts for, deactivation, ESR studies, 132, 263

Superacids

solid, ZrO₂/SO₄²⁻ catalysis of butane conversion in presence of hydrogen, analysis, **131**, 199

Superconductors

La_{2-x}Sr_xCuO₄₋₅, catalytic CO oxidation between 373 and 523 K, **131**, 582

Support effects

on Co-Ni alloy catalyst activity and selectivity for CO hydrogenation, 130, 202

in Rh catalysts: CO-O₂ and CO-NO reactions, 128, 526

Surface diffusion

varying intensities, catalytic reactions under, Monte Carlo and ideal adsorbed layer models, comparison, 132, 302

Surfaces

alkali/alkaline earth oxide catalysts, interaction with methane, 129, 106

γ-Al₂O₃, MoO₃ spreading, EXAFS study, **130**, 192 δ-Al₂O₃, and CoAl₂O₄ and NiAl₂O₄, comparative properties, FTIR study, **131**, 167

AlPO₄ catalysts, synthetic and modified, NMR characterization, 130, 642

carbon support in Mo catalysts, properties, effect on catalyst behavior, 129, 330

Co, structure, role in CO hydrogenation, **128**, 231 CoAl₂O₄, and δ-Al₂O₃ and NiAl₂O₄, comparative properties, FTIR study, **131**, 167

hydroxylation during MgO synthesis by sol-gel method, effect of pH, 127, 75

H-ZSM-5 zeolites, adsorbed species during toluene methylation, in situ IR spectroscopic study, 132, 244

La₂O₃-CaO catalysts, properties, effect on oxidative coupling of methane, **128**, 512

Li/MgO catalysts, related phenomena during oxidative coupling of methane, 131, 143

LiNiO₂ catalysts methane coupling, oxygen species on, characterization and interaction with carbon oxides, **132**, 92

metal

area, determination of very small values by CO-

H₂ titration, letter to editor, **127**, 457; reply, **127**, 460

C—C formation and cleavage on, mechanisms: formation of butenes and hexenes from linear and branched pentenes over Ru/SiO₂ catalysts, 132, 472

metal oxide, acidity and basicity, determination by catalytic decomposition of isopropanol, 131, 190

mixed oxides of Cu, Co, and Mn, enrichment, effect on CO oxidation, 130, 52

Ni(111), adsorption of CH₃, CH₂, and CH, molecular orbital studies, **127**, 141

Ni/Al₂O₃

and δ-Al₂O₃ and CoAl₂O₄, comparative properties, FTIR study, 131, 167

characterization: homologation of propene with methane, 129, 368

Ni/SiO₂ catalysts, characterization: homologation of propene with methane, 129, 368

Pd/NaY and Pd/HY catalysts, methylcyclopentane ring opening and enlargement, temperatureprogrammed studies, 132, 266

Pt

analysis in situ with solid electrolyte cyclic voltammetry, 129, 67

colloidal, chemistry, IR and NMR studies: CO adsorption, 129, 530

Rh(111)

adsorption of CH₃, CH₂, and CH, molecular orbital studies, 127, 141

decarbonylation of acetaldehyde and ethanol, divergent pathways, 130, 528

Ru/TiO₂ interface, oxide films at, formation and H₂/ CO chemisorption, temperature effects, 130, 173

SiO₂, TiO₂ monolayer coatings, formation, 131, 260 Sm₂O₃ catalysts, coverages during oxidative coupling of methane, steady-state vs. non-steady-state transient kinetic analysis, 132, 556

square and hexagonal, NO-CO reaction on, Monte Carlo simulation, 131, 369

V₂O₅ catalysts

TiO₂-supported, characterization by FTIR, **128**, 499

on various supports, redox sites, surface oxidesupport interactions, 129, 307

V-Ti-O catalysts prepared by solid-state reaction, structure and reactivity

formation of V^{IV} interacting layer, 130, 220 nature of active phase formed during o-xylene oxidation, 130, 238

WC and β-W₂C catalysts, oxygen on, effects on pathways for reactions of neopentane, methylcyclohexane, and 3,3-dimethylpentane, 130, 86

 WO_3/Al_2O_3 catalysts, area determination, 129, 195 Synthesis

aldehydes from synthesis gas over Na-promoted Mn-Ni catalysts, 128, 569

HCN in solid electrolyte cell, kinetics, 132, 257 higher alcohols, K-Co-Rh-Mo/Al₂O₃ catalysts for, adsorption of CO, 132, 375

hydrocarbons, Ru-catalyzed, transport-enhanced α olefin readsorption pathways in, analysis, 129,
238

hydrotreating catalysts via promotion by low-valent transition metal complexes, 130, 116

iron oxide pillared clays with large gallery height, 130, 29

methylamine over modified mordenite catalysts, selectivity, 131, 482

MgO, by sol-gel method: effect of pH on surface hydroxylation, 127, 75

NH₃ over Fe/TiO₂ catalysts, kinetics, effects of hydrazine pretreatment and alkali promotion of catalysts, 127, 227

Pd complexes anchored in montmorillonite, 130, 41 phosphorus—vanadium mixed oxide catalysts for partial *n*-butane oxidation to maleic anhydride, 128, 248

propylene oxide from propylene and hydrogen peroxide over titanium silicalite catalysts, 129, 159

Ti-rich zeolites with MFI structure, 130, 1

Synthesis gas

aldehyde synthesis from, catalysis by Na-promoted Mn-Ni, 128, 569

T

Tartaric acid

conversion to pyruvic acid, application of catalysts for vapor-phase dehydration of ethylene glycol, 129, 12

Temperature

ambient, photocatalytic codeposition of metals at, in synthesis of TiO₂-supported bimetallic catalysts, **132**, 490

calcination

for Al₂O₃, effect on adsorption/impregnation of Pd(II) compounds onto alumina, **132**, 422

effects on Ni/MgO catalyst structure and morphology, 132, 58

effects on

1-hexene isomerization over Pt/γ-Al₂O₃ catalysts, 131, 445

surface oxide film formation and H₂/CO chemisorption at Ru/TiO₂ interface, **130**, 173

elevated, in air, stability of bismuth molybdate catalysts at, analysis, 132, 536

reduction, effect on Ni/MgO catalyst structure and morphology, 132, 58

Temperature-programmed desorption

analysis of Pd catalysts on modified Al₂O₃ supports in methanol decomposition, **128**, 198

-TPR-MS, in mechanistic analysis of ammoxidation of 2-methylpyrazine over Sb-V-Mn-O catalysts, 130, 392 synthesis of 2-methylpyrazine over palladized Zn-Cr-O catalysts, **130**, 403

Temperature-programmed reduction

in analysis of $A_{2+x}Ru_{2-x}O_{7-y}$ (A = Bi,Pb) catalyst surfaces, 127, 421

-TPD-MS, in mechanistic analysis of

ammoxidation of 2-methylpyrazine over Sb-V-Mn-O catalysts, 130, 392

synthesis of 2-methylpyrazine over palladized Zn-Cr-O catalysts, **130**, 403

Tetrahydrothiophene

desulfurization on Co-Mo/γ-Al₂O₃ catalysts, temporal analysis of products, 127, 190

Thiophene

hydrodesulfurization over

Mo/C catalysts, effects of carbon surface and structural properties, 129, 330

NiCo-Mo/SiO₂ catalysts, promoter effects, 131, 385

Ni-Mo catalysts promoted by fluoride, comparison of supports, **128**, 537

Ni-Mo/C sulfided catalysts, role of Ni, 131, 326

Thymine

solid-state tritiation on Pt black catalysts, kinetics, 130, 569

Tin

from organometallics, alloyed with Pd in Al₂O₃-supported bimetallic catalysts, gas-phase dehydrogenation of valylene and isoprene, **129**, 47

-Pt bimetallic catalysts

Al₂O₃-supported

alloy formation in, Mössbauer studies, 128, 1 chemisorption and XPS studies, 127, 287 electron microdiffraction study, 129, 257 neopentane reactions, 132, 451

SiO₂-supported

alloy formation in, Mössbauer studies, **128**, 1 microstructure, **129**, 473

-Rh bimetallic catalysts supported on SiO₂, microstructure, 129, 473

role in Cu-catalyzed direct synthesis of methylchlorosilanes, 128, 468

-Ru alloys, Al₂O₃-supported, catalytic properties, 128, 275

Tin oxides

support of Pt catalysts, CO oxidation

at low-temperature: comparison with Au/MnO_x catalysts, 129, 114

mechanism, 130, 314

Titania, see Titanium dioxide

Titanium

support of V₂O₅ catalysts prepared by solid-state reaction, surface structure and reactivity: nature of active phase formed during *o*-xylene oxidation, **130**, 238

Titanium butoxide

triethylaluminum-supported catalysts, ethylene dimerization, kinetics, 132, 68

Titanium dioxide

- -Al₂O₃, support of Ir and Pt catalysts, structure and activity, 127, 201
- anatase, rutile, and TiO₂(B) polymorphs, support of V₂O₅ catalysts for ammoxidation of toluene, ESR and HREM characterization, 132, 128
- basic sites, generation by reduction with H_2 , 127, 221
- coated SiO₂, support of Pt catalysts, analysis, 129, 447
- glass-supported membranes, photocatalytic degradation of 3-chlorosalicylic acid, kinetic studies, 127, 167
- irradiated, mediation of photocatalyzed mineralization of cresol in aqueous media, 128, 352
- loaded Ru/SiO₂ model dispersed catalysts, strong metal-support interactions, 129, 486
- monolayer coatings on SiO₂ surfaces, formation, 131, 260
- -NiO catalysts, acid-modified, catalytic activity, effect of acid strength, 127, 449
- -Ru interface, surface oxide films at, formation and H₂/CO chemisorption, temperature effects, 130, 173
- Sb oxide dispersed on, propene oxidation over, structural and kinetic studies, 127, 698
- -SiO₂ catalysts, silanol bending vibration, IR band frequency, correlation with acid catalytic activity, 132, 563
- supported bimetallic catalysts, synthesis by photocatalytic metal codeposition at ambient temperature, 132, 490

support of

- Fe catalysts, NH₃ synthesis, kinetics, effects of hydrazine pretreatment and alkali promotion of catalysts, 127, 227
- MoO₃ catalysts, interaction with As₂O₃, X-ray absorption and diffuse reflectance IR spectroscopic studies, 129, 168
- Pd catalysts, hydrogenation of toluene and xylene kinetics and xylene isomerization, 127, 251 reaction model, 127, 267

Pt catalysts

- morphology and SMSI effects on chemisorption properties and reactivities, 130, 359
- SMSI reversal by CO hydrogenation, 128, 186 Rh catalysts, active site densities, determination with single turnover procedure, evaluation, 127, 675

Ru catalysts

- CO₂ methanation, FTIR study, **129**, 130 deactivation during Fischer-Tropsch synthesis, isotopic tracer study, **130**, 597
- V2O5 catalysts
 - characterization of surface sites by FTIR, 128, 499
 - prepared by solid-state reaction, surface structure and reactivity: formation of V^{IV} interacting layer, **130**, 220

- surface oxide-support interactions at surface redox sites, 129, 307
- WO₃ catalysts, interaction with As₂O₃, X-ray absorption and diffuse reflectance IR spectroscopic studies, 129, 168
- -ZrO₂ catalysts, dehydrocyclization of C₆-C₈ n-paraffins to aromatics, **130**, 577

Titanium oxides

-Ni systems, phase mobility, role of hydrogen, 131, 51

Titanium silicalites

- crystalline, catalytic properties: synthesis and characterization of Ti-rich zeolites with MFI structure, 130, 1
- TS-1 catalysts
 - cyclohexanone ammoximation, properties, 131,
 - properties: phenol hydroxylation with H_2O_2 , 131, 294
 - propylene oxide synthesis from propylene and hydrogen peroxide, 129, 159
- TS-2, with MEL structure, synthesis, characterization, and catalytic properties, 130, 440

Titration

- CO-H₂, for determination of very small surface areas, application to Pt/Al₂O₃ catalysts, letter to editor, 127, 457; reply, 127, 460
- with H₂, O₂ adsorbed on Pt powder and Pt/SiO₂, enthalpy changes, **129**, 31

Toluene

- and aldehydes, condensation over USY zeolites, 130, 138
- alkylation and disproportionation over H-ZSM-5 modified by chemical vapor deposition of silicon alkoxide, shape selectivity, 128, 551

ammoxidation over

- V₂O₅ catalysts supported on anatase, rutile, and TiO₂(B) polymorphs, ESR and HREM catalyst characterization, **132**, 128
- V-Sb-Bi oxide/Al₂O₃ catalysts, dehydrogenation mechanism, **127**, 354
- conversion with ZSM-5 zeolite, analysis: aromatic ring expansion-contraction mechanism, 127, 96

hydrogenation over Pd catalysts

kinetics, 127, 251

reaction model, 127, 267

- hydroxylation over TS-2 catalysts with MEL structure, 130, 440
- methylation over H-ZSM-5 zeolites, surface species during, in situ IR spectroscopic study, 132, 244
- oxidation over Ag_{1.2}V₃Ce_yO_{8+x} catalysts, catalytic and spectroscopic studies, 131, 350
- oxidative coupling by metal oxide catalysts, 131, 215 reaction with benzene over H-ZSM-5 zeolite, retained products, 127, 113
- selective oxidation to benzaldehyde over V-Ag catalysts, analysis, 129, 426
- TPD, see Temperature-programmed desorption TPR, see Temperature-programmed reduction

Transition metals

atomically dispersed, polyoxoanion-supported catalysts, cyclohexene oxidation with O₂, 128, 84

catalysis of deuterium exchange and decomposition reactions of methylhydrazine and 1,1-dimethylhydrazine, 129, 25

-gas interfaces, surface-enhanced Raman spectroscopic study: SO₂ adsorption and reactions on Pt-, Rh-, and Ru-coated Au catalysts, 130, 62

low-valent complexes, in synthesis of hydrotreating catalysts, 130, 116

Transition metal sulfides

carbon-supported catalysts, hydrodenitrogenation of

cyclohexylamine, decahydroquinoline, and *O*-propylaniline, **127**, 605 quinoline, **127**, 619

Transition state

two-monomer, role in trigger mechanism of α -olefin polymerization with Ziegler-Natta catalysts, 129, 383

Triethylaluminum

titanium butoxide-supported catalysts, ethylene dimerization, kinetics, 132, 68

Triethylamine

adsorption on SiO₂ and SiO₂-Al₂O₃, microcalorimetric measurements, **128**, 23

Trimethylamine

adsorption on SiO₂ and SiO₂-Al₂O₃, microcalorimetric measurements, **128**, 23

1,2,4-Trimethylbenzene, see Pseudocumene

Tris(ethylenediamine) cobalt molybdate

derived unsupported hydrotreating catalyst, effect of sulfiding, 131, 298

Tritiation

solid-state, thymine on Pt black catalysts, kinetics, 130, 569

Tungsten

Al₂O₃-supported reduced catalysts, adsorption of CO and NO, IR study, **131**, 234

catalysis of deuterium exchange and decomposition reactions of methylhydrazine and 1,1-dimethylhydrazine, 129, 25

support of Co catalysts, CO hydrogenation, role of catalyst surface structure and dispersion, 128, 231

Tungsten carbides

catalysis of reactions of neopentane, methylcyclohexane, and 3,3-dimethylpentane, pathways, effects of surface oxygen, 130, 86

oxygen-modified catalysts, bifunctional reactions of alkanes, 131, 523

Tungsten trioxide

acid-base properties, characterization via selective ring opening of 2-methyloxirane, 129, 303

Al₂O₃-supported catalysts, surface area determination, **129**, 195

SiO₂-supported catalysts, propene metathesis: mechanism of catalyst induction, 127, 86

TiO₂-supported catalysts, interaction with As₂O₃, Xray absorption and diffuse reflectance IR spectroscopic studies, **129**, 168

12-Tungstophosphoric acid, see 12-Phosphotungstic acid

U

Ultraviolet light

irradiated Mo/SiO₂ catalysts, coordination sphere of Mo⁵⁺ in, EPR study, letter to editor, **131**, 300

-visible light, irradiated TiO₂, mediation of photocatalyzed mineralization of cresol in aqueous media, 128, 352

v

Valylene, see 2-Methyl-1-buten-3-yne Vanadia, see Vanadium pentoxide Vanadium

 -Ag catalysts, selective oxidation of toluene to benzaldehyde, analysis, 129, 426

 $Ag_{1.2}V_3Ce_yO_{8+x}$ catalysts, toluene oxidation, catalytic and spectroscopic studies, 131, 350

attack on REY zeolites, inhibition, role of oxide acid-base reactions, 129, 269

-Mg-O catalysts, oxidative dehydrogenation of cyclohexane, 128, 287

 -P-O catalysts for n-butane oxidation to maleic anhydride

synthesis and characterization, 128, 248

Zn as promoter for, location and function, 130, 347

polymer-supported catalysts for cyclohexene epoxidation, activation, activity, and stability, 131,

-Sb-Bi oxide catalysts, γ-Al₂O₃-supported, ammoxidation of alkylaromatic hydrocarbons, dehydrogenation mechanism, 127, 354

-Sb-Mn-O catalysts, 2-methylpyrazine ammoxidation, TPD-TPR-MS mechanistic study, 130, 392

Vanadium oxides

catalysis of graphite gasification by CO_2 , H_2O , and O_2 , 130, 161

coated Pt foil catalysts, NO reduction by NH₃, 129, 186

Vanadium pentoxide

γ-Al₂O₃-supported catalysts, monolayer structure, IR spectroscopic analysis with probe molecules, 127, 665

anatase-, rutile-, and TiO₂(B)-supported catalysts for ammoxidation of toluene, ESR and HREM characterization, 132, 128

catalysis of oxidative coupling of methylbenzenes, 131, 215

and Nb₂O₅, promoted Rh/SiO₂ catalysts, comparison: behaviors during calcination and reduction treatments, 127, 276

SiO₂-supported catalysts

active for selective reduction of NO, effects of promoters, 128, 574

ethane oxidation, role of adsorbate bonding, 128, 210

supported catalysts, surface oxide-support interactions at surface redox sites, 129, 307

TiO₂-supported catalysts

characterization of surface sites by FTIR, 128, 499

prepared by solid-state reaction, surface structure and reactivity

formation of V^{IV} interacting layer, 130, 220 nature of active phase formed during o-xylene oxidation, 130, 238

Vanadyl etioporphyrin

hydrodemetallation over $CoMo/Al_2O_3$ and promoted Al_2O_3 catalysts, catalyst deactivation during, kinetic studies, 132, 1

β-Vanadyl phosphate

catalysis of selective oxidation of C₄ hydrocarbons, reactive oxygen lattice sites for, analysis, **128**, 113

Visible light

-uv light, irradiated TiO₂, mediation of photocatalyzed mineralization of cresol in aqueous media, 128, 352

Voltammetry

solid electrolyte cyclic, for *in situ* analysis of catalyst surfaces, **129**, 67

W

Water

adsorption on polycrystalline Cu: relevance to water-gas shift reaction, 130, 514

and CO, promoted reaction mechanism in watergas shift reaction: genesis of surface catalysis, 129, 343

gasification of graphite over transition metal oxide catalysts, 130, 161

photodecomposition on semiconductors, associated hydrogen evolution, MoS₂/SiO₂ as catalysts for, evaluation, 131, 156

vapor, and chloride, effect on Pt-Ir interaction and IrO₂ agglomeration in bimetallic Pt-Ir reforming catalysts, **131**, 378

Water-gas shift reaction

Cu-based catalysts for, analysis: in situ cell for combined X-ray diffraction and on-line catalysis tests, 132, 524

implications of water adsorption on polycrystalline Cu catalysts, 130, 514

on ZnO catalysts, reactant-promoted mechanism: genesis of surface catalysis, 129, 343

 \mathbf{X}

Xenon

sorbed to ZSM-5 zeolites, NMR study: evidence for coke formation, 128, 520

XPS, see X-ray photoelectron spectroscopy

X-ray absorption spectroscopy

in analysis of As₂O₃ interaction with deNO_x catalysts, **129**, 168

X-ray diffraction

and on-line catalysis tests, in situ cell for simultaneous studies: Cu-based water-gas shift and methanol synthesis catalysts, 132, 524

and Raman spectroscopy, Cu/ZrO₂ and Pd/ZrO₂ catalysts prepared from amorphous precursors: identification of ZrO₂ modifications, **130**, 657

X-ray photoelectron spectroscopy

 γ -Al₂O₃ model catalysts modified by Mo and Pt, **130**, 332

amorphous AlPO₄ supports, 128, 293

 $A_{2+x}Ru_{2-x}O_{7-y}$ (A = Bi,Pb) catalyst surfaces, 127, 421

based model for sputtering behavior of powder materials: depth profiling of catalyst samples, **130**, 627

Pd catalysts on modified Al₂O₃ supports in methanol decomposition, **128**, 198

Pt-Sn/Al₂O₃ catalysts, 127, 287

Xylene

ammoxidation over V-Sb-Bi oxide/Al₂O₃ catalysts, dehydrogenation mechanism, 127, 354

hydrogenation over Pd catalysts

kinetics and isomerization characteristics, 127, 251

reaction model, 127, 251

isomerization on large-pore zeolites, evidence for bimolecular pathway, 129, 177

oxidative coupling by metal oxide catalysts, **131**, 215 o-Xylene

and aldehydes, condensation over USY zeolites, 130, 138

oxidation on V_2O_5/TiO_2 catalysts prepared by solidstate reaction

active phase formed during, characterization, 130, 238

formation of VIV interacting layer, 130, 220

Y

Ytterbium oxide

acidity/basicity, relationship to catalytic activity for oxidative coupling of methane to C₂-hydrocarbons, **130**, 411

Yttria, see Yttrium oxide

Yttrium oxide

stabilized ZrO₂

electrocatalytic conversion of CO₂ to methane and O₂, **129**, 216

solid electrolyte cell, HCN synthesis in, kinetics, 132, 257

Z

Zeolites

adsorption and diffusion in, simulation, **127**, 101 alkali metal-exchanged, formation of ketenes from carboxylic acids, **129**, 438

beta, thermal stability, 132, 432

Ce-Y, Cr-Y, and H-Y, oxidation of chlorinated hydrocarbons, comparison, 130, 76

Cu-exchanged, NO decomposition, 129, 202

encaged Pd clusters and Pd-proton adducts, conversion of methylcyclopentane, 129, 121

framework Ga, electronegativity and IR spectroscopic study, 129, 19

HNa-Y, hydroxyl groups, fundamental bending vibrations, observation by neutron inelastic scattering, 131, 289

H-Y

and Ce-Y and Cr-Y, oxidation of chlorinated hydrocarbons, comparison, 130, 76

coked, Xe NMR and Ar quasi-equilibrium sorption studies, 128, 436

support of Pd catalysts, surface reactions of methylcyclopentane, temperature-programmed studies, 132, 266

H-ZSM-5

acid sites, magic-angle-spinning NMR studies, 127, 34

catalysis of shape-selective acetalization of aldehydes, 128, 63

conversion of butanes, analysis, 130, 423

Ga-Pt loaded, reduction by hydrogen, 130, 611 modified by chemical vapor deposition of silicon alkoxide, toluene alkylation and disproportionation, shape selectivity, 128, 551

phosphorus-modified, spectroscopic and physicochemical characterization, 132, 229

reaction of toluene with benzene, retained products, 127, 113

toluene methylation, surface species during, in situ IR spectroscopic study, 132, 244

H-ZSM-22, -48, and -50, acidity and sorbate shape selectivity, 129, 293

KY, support of Ru catalysts, CO hydrogenation, effect of nitromethane addition, 128, 311

 L, support of Pt catalysts, reforming of n-hexane, kinetic and mechanistic considerations, 129, 145

La-H-Y and H-mordenite, benzene isopropylation, activity and deactivation studies, 132, 79

large-pore, xylene isomerization, evidence for bimolecular pathway, 129, 177 NaH-ZSM-5, dehydration of *tert*-butanol, kinetics, 127, 377

NaX, transient diffusion, sorption, and desorption of cyclopropane, 131, 94

NaY

cages, PdNi_x formation in, mechanisms, 131, 573 support of Pd catalysts, surface reactions of methylcyclopentane, temperature-programmed studies, 132, 266

NH₄NaY, dealumination by hydrothermal treatment, kinetic study, **130**, 459

properties, relationship to performance in paraffin cracking, 127, 51

REY, attack by vanadium, inhibition, role of oxide acid-base reactions, 129, 269

rho, sorption properties, 127, 9

support of metal catalysts, selective hydrogenation of α,β -unsaturated aldehydes, geometric and electronic effects, **131**, 401

Ti-rich, with MFI structure, synthesis and characterization, 130, 1

TS-1, catalytic properties: phenol hydroxylation with H₂O₂, **131**, 294

USY, catalysis of condensation of aldehydes with benzene derivatives, 130, 138

Y

activity, selectivity, and stability in *n*-heptane cracking, effect of extra-framework Al species, **130**, 471

based catalysts, cracking of alkanes, quantitative analysis of primary products, 132, 409

basic, Os in, as stable selective catalyst for CO hydrogenation, design, 129, 315

encaged Pd particles, CO-induced growth, EXAFS evidence, 127, 213

formation of electron-deficient Pd-H⁺ adducts in, effects of Ca²⁺ and Mg²⁺, 128, 13

supported PdCu particles, oxidative leaching of Cu atoms from, analysis, 131, 502

ultrastable, and ZSM-5, enhancement of gasoline octane number, 129, 275

ZSM-5

aromatic conversions, analysis: ring expansioncontraction mechanism, 127, 96

coke formation: evidence from NMR spectrometry of sorbed Xe gas, 128, 520

combined with Pt catalysts, structural studies, 127, 366

and ultrastable Y, enhancement of gasoline octane number, 129, 275

Ziegler-Natta catalysts

polymerization of α -olefins: two-monomer transition state and monomer activation of catalytic centers, 129, 383

Zinc

-Cr-O, support of Pd catalysts, 2-methylpyrazine synthesis, TPD-TPR-MS mechanistic study, 130, 403

- -Cu and -Cu-Al catalysts, analysis: in situ cell for combined X-ray diffraction and on-line catalysis tests, 132, 524
- location and function as promoter element in V-P-O catalysts for *n*-butane oxidation to maleic anhydride, 130, 347
- role in Cu-catalyzed direct synthesis of methylchlorosilanes, 128, 468

Zinc oxide

- catalysis of water-gas shift reaction, reactant-promoted mechanism: genesis of surface catalysis, **129**, 343
- -Cu-Cr₂O₃ catalysts, higher alcohol synthesis, effects of CO₂, methanol, and alkali promoters, **130**, 616
- doping of MgO catalysts, effect on methane coupling activity, 130, 147
- SiO₂-supported catalysts, acidity, analysis by microcalorimetric measurements of pyridine adsorption, 127, 706

Zirconia, see Zirconium oxide

Zirconium oxide

- acid-base properties, characterization via selective ring opening of 2-methyloxirane, 129, 303
- solid electrolyte cell, Y2O3-stabilized, HCN synthesis in, kinetics, **132**, 257
- -SO₄² solid superacid catalysts, butane conversion in presence of hydrogen, analysis, 131, 199

support of

CrO_x catalysts

ESR spectroscopic study of Cr species, 127,

preparation and characterization, 127, 744 propene hydrogenation, 127, 777

- Cu catalysts prepared from amorphous precursors, XRD and Raman studies: identification of ZrO₂ modifications, 130, 657
- Cu-La oxide catalysts, reaction of NO and CO, catalyst activity, 132, 560

Pd catalysts

- heptane oxidation, effects of catalyst structure and carbon deposition, 130, 374
- prepared from amorphous precursors, XRD and Raman studies: identification of ZrO2 modifications, 130, 657

Rh catalysts

- adsorption of CO and NO, 132, 275 promoting effects of Se for ethene hydroformylation, 127, 631
- V₂O₅ catalysts, surface oxide-support interactions at surface redox sites, 129, 307
- -TiO₂ catalysts, dehydrocyclization of C₆-C₈ n-paraffins to aromatics, 130, 577
- Y₂O₃-stabilized, electrocatalytic conversion of CO₂ to methane and O2, 129, 216

Statement of ownership, management, and circulation required by the Act of October 23, 1962, Section 4369, Title 39, United States Codes of

JOURNAL OF CATALYSIS

Published monthly by Academic Press, Inc., 8277 Sea Harbor Drive, Orlando, FL 32887-4990. Number of issues published annually 12. Editors: Prof. Cary L. Haller, Department of Chemical Engineering, P.O. Box 2159 Yale Station, Yale University of Besche 12016 Stone, School of Chemistry, University of Bath BAZ 721,

annually: 12. Duttors: FIVI. 503)

University, New Haven, CT 06320-2159; and Dr. Frank S. Stone, School of Chemistry, University of Bath, Bath pacing, England.

University, New Haven, CT 06320-2159; and Dr. Frank S. Stone, School of Chemistry, University of Bath, Bath pacing, England.

Owned by Academic Press, Inc., 1250 Sixth Avenue, San Diego, CA 92101. Known bondholders, mortgages, and other securities None Paragraphs 2 and 3 include, in cases where the stockholder or security holders owning or holding 1 percent or more of total amount of bonds, mortgages, and other securities None Paragraphs 2 and 3 include, also the statements in the two paragraphs show the affinant's full knowledge and belief as to the circumstances and conditions under which stockholders and securities in a capacity other than that of bona filed wowner. Names and addresses of individuals who are stockholders of a corporation which itself is a stockholder of bonds, mortgages, or other securities of the publishing corporation which itself is a stockholder of bonds, mortgages, or other securities of the publishing corporation which itself is a stockholder of bonds, mortgages, or other securities of the publishing corporation which itself is a stockholder of bonds, mortgages, or other securities of the publishing corporation which itself is a stockholder of bonds, mortgages, or other securities of the publishing corporation. Total no. copies printed: average no. copies each issue during preceding 12 months: 1745; single issue nearest to filing date 1721. Pald circulation (a) to term subscribers by mall, carrier delivery, or by other means: average no. copies each issue during preceding 12 months: 1745; single issue nearest to filing date in 1721. Pald circulation (a) to term subscribers by mall, carrier delivery, or by other means: average no. copies each issue during preceding 12 months: 1745; single issue nearest to filing date 1723. Disable through agents, news deelers, or or otherwises average no. copies each issue during preceding 12 mo

(Signed) Evelyn Sasmor, Senior Vice President